These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 17333896)

  • 1. [Study of a novel dissoluble adhesive and its application in tissue engineering].
    Chen J; Cui L; Liu W; Cao Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):76-80. PubMed ID: 17333896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles.
    Yu G; Fan Y
    J Biomater Sci Polym Ed; 2008; 19(1):87-98. PubMed ID: 18177556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of porous scaffolds with a controllable microstructure and mechanical properties by porogen fusion technique.
    Tan Q; Li S; Ren J; Chen C
    Int J Mol Sci; 2011 Jan; 12(2):890-904. PubMed ID: 21541032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Preparation and in vitro characterization of novel hydrophilic poly(D,L-lactide)/poly (ethylene glycol)-poly (lactide) composite scaffolds].
    Sun R; Pan G; Zhang L; Du J; Xiong C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):91-6. PubMed ID: 17333899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Studies on poly-D, L-lactide acid scaffolds modified by conjugation of bioactive peptides via ammonia plasma treatment].
    Xu Z; Chen J; Yin S; Zhu Q; Li T; Zha D; Jiang X; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Nov; 24(11):1376-85. PubMed ID: 21226366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of poly(L-lactic acid) nanofiber scaffolds with a rough surface by phase inversion using supercritical carbon dioxide.
    Yang DZ; Chen AZ; Wang SB; Li Y; Tang XL; Wu YJ
    Biomed Mater; 2015 Jun; 10(3):035015. PubMed ID: 26107415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving pore interconnectivity in polymeric scaffolds for tissue engineering.
    Aydin HM; El Haj AJ; Pişkin E; Yang Y
    J Tissue Eng Regen Med; 2009 Aug; 3(6):470-6. PubMed ID: 19530258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of three-layered porous PLA/PEG scaffold: relationship between morphology, mechanical behavior and cell permeability.
    Scaffaro R; Lopresti F; Botta L; Rigogliuso S; Ghersi G
    J Mech Behav Biomed Mater; 2016 Feb; 54():8-20. PubMed ID: 26410761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smooth muscle cell adhesion in surface-modified three-dimensional copolymer scaffolds prepared from co-continuous blends.
    Bramfeldt H; Sarazin P; Vermette P
    J Biomed Mater Res A; 2009 Oct; 91(1):305-15. PubMed ID: 18980194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional multiporous fibrous scaffold fabricated with regenerated spider silk protein/poly(l-lactic acid) for tissue engineering.
    Yu Q; Sun C
    J Biomed Mater Res A; 2015 Feb; 103(2):721-9. PubMed ID: 24825592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen.
    Clark A; Milbrandt TA; Hilt JZ; Puleo DA
    Acta Biomater; 2014 May; 10(5):2125-32. PubMed ID: 24424269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional honeycomb-patterned chitosan/poly(L-lactic acid) scaffolds with improved mechanical and cell compatibility.
    Zhao M; Li L; Li X; Zhou C; Li B
    J Biomed Mater Res A; 2011 Sep; 98(3):434-41. PubMed ID: 21630436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering.
    Wei G; Ma PX
    Biomaterials; 2004 Aug; 25(19):4749-57. PubMed ID: 15120521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of poly(D,L-lactic acid) scaffolds for orthopedic applications: a biocompatible, nondestructive route via diazonium chemistry.
    Mahjoubi H; Kinsella JM; Murshed M; Cerruti M
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9975-87. PubMed ID: 24965034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composite hydrogel scaffolds with controlled pore opening via biodegradable hydrogel porogen degradation.
    Hawkins AM; Milbrandt TA; Puleo DA; Hilt JZ
    J Biomed Mater Res A; 2014 Feb; 102(2):400-12. PubMed ID: 23686850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histological study of surface modified three dimensional poly (D, L-lactic acid) scaffolds with chitosan in vivo.
    Cai K; Yao K; Yang Z; Qu Y; Li X
    J Mater Sci Mater Med; 2007 Oct; 18(10):2017-24. PubMed ID: 17558475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Formation of porous biodegradable scaffolds for tissue engineering].
    Hao B; Yin G; She L; Jiang X; Zheng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):140-3, 171. PubMed ID: 11951503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system.
    Kim JY; Yoon JJ; Park EK; Kim DS; Kim SY; Cho DW
    Biofabrication; 2009 Mar; 1(1):015002. PubMed ID: 20811097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.