BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 17334375)

  • 1. Sequence-specific dynamics modulate recognition specificity in WW domains.
    Peng T; Zintsmaster JS; Namanja AT; Peng JW
    Nat Struct Mol Biol; 2007 Apr; 14(4):325-31. PubMed ID: 17334375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for phosphoserine-proline recognition by group IV WW domains.
    Verdecia MA; Bowman ME; Lu KP; Hunter T; Noel JP
    Nat Struct Biol; 2000 Aug; 7(8):639-43. PubMed ID: 10932246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Converging on proline: the mechanism of WW domain peptide recognition.
    Zarrinpar A; Lim WA
    Nat Struct Biol; 2000 Aug; 7(8):611-3. PubMed ID: 10932238
    [No Abstract]   [Full Text] [Related]  

  • 4. Solution structure of the single-domain prolyl cis/trans isomerase PIN1At from Arabidopsis thaliana.
    Landrieu I; Wieruszeski JM; Wintjens R; Inzé D; Lippens G
    J Mol Biol; 2002 Jul; 320(2):321-32. PubMed ID: 12079389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterisation of PinA WW domain and a comparison with other group IV WW domains, Pin1 and Ess1.
    Ng CA; Kato Y; Tanokura M; Brownlee RT
    Biochim Biophys Acta; 2008 Sep; 1784(9):1208-14. PubMed ID: 18503784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of hPin1 WW N-terminal domain boundaries on function, protein stability, and folding.
    Jäger M; Nguyen H; Dendle M; Gruebele M; Kelly JW
    Protein Sci; 2007 Jul; 16(7):1495-501. PubMed ID: 17586778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR solution structure of SlyD from Escherichia coli: spatial separation of prolyl isomerase and chaperone function.
    Weininger U; Haupt C; Schweimer K; Graubner W; Kovermann M; Brüser T; Scholz C; Schaarschmidt P; Zoldak G; Schmid FX; Balbach J
    J Mol Biol; 2009 Mar; 387(2):295-305. PubMed ID: 19356587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human Pin1.
    Namanja AT; Peng T; Zintsmaster JS; Elson AC; Shakour MG; Peng JW
    Structure; 2007 Mar; 15(3):313-27. PubMed ID: 17355867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of ligand specificity in groups I and IV WW domains as studied by surface plasmon resonance and model building.
    Kato Y; Ito M; Kawai K; Nagata K; Tanokura M
    J Biol Chem; 2002 Mar; 277(12):10173-7. PubMed ID: 11751914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cross-strand Trp Trp pair stabilizes the hPin1 WW domain at the expense of function.
    Jäger M; Dendle M; Fuller AA; Kelly JW
    Protein Sci; 2007 Oct; 16(10):2306-13. PubMed ID: 17766376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural analysis of the mitotic regulator hPin1 in solution: insights into domain architecture and substrate binding.
    Bayer E; Goettsch S; Mueller JW; Griewel B; Guiberman E; Mayr LM; Bayer P
    J Biol Chem; 2003 Jul; 278(28):26183-93. PubMed ID: 12721297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function-folding relationship in a WW domain.
    Jäger M; Zhang Y; Bieschke J; Nguyen H; Dendle M; Bowman ME; Noel JP; Gruebele M; Kelly JW
    Proc Natl Acad Sci U S A; 2006 Jul; 103(28):10648-53. PubMed ID: 16807295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR solution structure of hPar14 reveals similarity to the peptidyl prolyl cis/trans isomerase domain of the mitotic regulator hPin1 but indicates a different functionality of the protein.
    Sekerina E; Rahfeld JU; Müller J; Fanghänel J; Rascher C; Fischer G; Bayer P
    J Mol Biol; 2000 Aug; 301(4):1003-17. PubMed ID: 10966801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of PIN1 WW domain through a simple statistical mechanics model.
    Bruscolini P; Cecconi F
    Biophys Chem; 2005 Apr; 115(2-3):153-8. PubMed ID: 15752598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of protein-protein interactions: structure-based discovery of low molecular weight inhibitors of the interactions between Pin1 WW domain and phosphopeptides.
    Smet C; Duckert JF; Wieruszeski JM; Landrieu I; Buée L; Lippens G; Déprez B
    J Med Chem; 2005 Jul; 48(15):4815-23. PubMed ID: 16033261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray crystal structures of Pin1.
    Kowalski JA; Liu K; Kelly JW
    Biopolymers; 2002 Feb; 63(2):111-21. PubMed ID: 11786999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common mechanism of ligand recognition by group II/III WW domains: redefining their functional classification.
    Kato Y; Nagata K; Takahashi M; Lian L; Herrero JJ; Sudol M; Tanokura M
    J Biol Chem; 2004 Jul; 279(30):31833-41. PubMed ID: 15133021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Pin1 peptidyl-prolyl cis/trans isomerase activity by its WW binding module on a multi-phosphorylated peptide of Tau protein.
    Smet C; Wieruszeski JM; Buée L; Landrieu I; Lippens G
    FEBS Lett; 2005 Aug; 579(19):4159-64. PubMed ID: 16024016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of the human parvulin-like peptidyl prolyl cis/trans isomerase, hPar14.
    Terada T; Shirouzu M; Fukumori Y; Fujimori F; Ito Y; Kigawa T; Yokoyama S; Uchida T
    J Mol Biol; 2001 Jan; 305(4):917-26. PubMed ID: 11162102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Resolution Mapping of the Folding Transition State of a WW Domain.
    Dave K; Jäger M; Nguyen H; Kelly JW; Gruebele M
    J Mol Biol; 2016 Apr; 428(8):1617-36. PubMed ID: 26880334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.