BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 17334630)

  • 1. Proteomic profiling of pathological and aged skeletal muscle fibres by peptide mass fingerprinting (Review).
    Doran P; Donoghue P; O'Connell K; Gannon J; Ohlendieck K
    Int J Mol Med; 2007 Apr; 19(4):547-64. PubMed ID: 17334630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic profiling of x-linked muscular dystrophy.
    Lewis C; Carberry S; Ohlendieck K
    J Muscle Res Cell Motil; 2009 Dec; 30(7-8):267-9. PubMed ID: 20082121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteomic analysis of the contractile-protein-depleted fraction from normal versus dystrophic skeletal muscle.
    Carberry S; Zweyer M; Swandulla D; Ohlendieck K
    Anal Biochem; 2014 Feb; 446():108-15. PubMed ID: 23954569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of an integrated strategy for proteomic profiling of skeletal muscle.
    Le Bihan MC; Tarelli E; Coulton GR
    Proteomics; 2004 Sep; 4(9):2739-53. PubMed ID: 15352248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP.
    Doran P; Martin G; Dowling P; Jockusch H; Ohlendieck K
    Proteomics; 2006 Aug; 6(16):4610-21. PubMed ID: 16835851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic profiling reveals a severely perturbed protein expression pattern in aged skeletal muscle.
    O'Connell K; Gannon J; Doran P; Ohlendieck K
    Int J Mol Med; 2007 Aug; 20(2):145-53. PubMed ID: 17611631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging skeletal muscle shows a drastic increase in the small heat shock proteins alphaB-crystallin/HspB5 and cvHsp/HspB7.
    Doran P; Gannon J; O'Connell K; Ohlendieck K
    Eur J Cell Biol; 2007 Oct; 86(10):629-40. PubMed ID: 17761354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics of the dystrophin-glycoprotein complex and dystrophinopathy.
    Holland A; Carberry S; Ohlendieck K
    Curr Protein Pept Sci; 2013 Dec; 14(8):680-97. PubMed ID: 24106963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced expression of regucalcin in young and aged mdx diaphragm indicates abnormal cytosolic calcium handling in dystrophin-deficient muscle.
    Doran P; Dowling P; Donoghue P; Buffini M; Ohlendieck K
    Biochim Biophys Acta; 2006 Apr; 1764(4):773-85. PubMed ID: 16483859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of the sarcolemma-enriched fraction from dystrophic mdx-4cv skeletal muscle.
    Murphy S; Zweyer M; Henry M; Meleady P; Mundegar RR; Swandulla D; Ohlendieck K
    J Proteomics; 2019 Jan; 191():212-227. PubMed ID: 29408692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of dystrophic muscle.
    Lewis C; Doran P; Ohlendieck K
    Methods Mol Biol; 2012; 798():357-69. PubMed ID: 22130847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lectin-based proteomic profiling of aged skeletal muscle: decreased pyruvate kinase isozyme M1 exhibits drastically increased levels of N-glycosylation.
    O'Connell K; Doran P; Gannon J; Ohlendieck K
    Eur J Cell Biol; 2008 Oct; 87(10):793-805. PubMed ID: 18602720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of dystrophin deficiency and associated changes in the aged mdx-4cv heart model of dystrophinopathy-related cardiomyopathy.
    Murphy S; Dowling P; Zweyer M; Mundegar RR; Henry M; Meleady P; Swandulla D; Ohlendieck K
    J Proteomics; 2016 Aug; 145():24-36. PubMed ID: 26961938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subproteomics analysis of Ca+-binding proteins demonstrates decreased calsequestrin expression in dystrophic mouse skeletal muscle.
    Doran P; Dowling P; Lohan J; McDonnell K; Poetsch S; Ohlendieck K
    Eur J Biochem; 2004 Oct; 271(19):3943-52. PubMed ID: 15373840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Subproteomic Markers for Skeletal Muscle Profiling.
    Dowling P; Gargan S; Swandulla D; Ohlendieck K
    Methods Mol Biol; 2023; 2596():291-302. PubMed ID: 36378446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subproteomic analysis of basic proteins in aged skeletal muscle following offgel pre-fractionation.
    Gannon J; Ohlendieck K
    Mol Med Rep; 2012 Apr; 5(4):993-1000. PubMed ID: 22267262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histopathology of Duchenne muscular dystrophy in correlation with changes in proteomic biomarkers.
    Zweyer M; Sabir H; Dowling P; Gargan S; Murphy S; Swandulla D; Ohlendieck K
    Histol Histopathol; 2022 Feb; 37(2):101-116. PubMed ID: 34873679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of slow- and fast-twitch skeletal muscles.
    Okumura N; Hashida-Okumura A; Kita K; Matsubae M; Matsubara T; Takao T; Nagai K
    Proteomics; 2005 Jul; 5(11):2896-906. PubMed ID: 15981298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation and identification of rat skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry.
    Yan JX; Harry RA; Wait R; Welson SY; Emery PW; Preedy VR; Dunn MJ
    Proteomics; 2001 Mar; 1(3):424-34. PubMed ID: 11680887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of secreted muscle components: search for factors involved in neuromuscular synapse formation.
    Gajendran N; Frey JR; Lefkovits I; Kuhn L; Fountoulakis M; Krapfenbauer K; Brenner HR
    Proteomics; 2002 Nov; 2(11):1601-15. PubMed ID: 12442258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.