These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 17334693)
1. Ion implantation modified stainless steel as a substrate for hydroxyapatite deposition. Part I. Surface modification and characterization. Pramatarova L; Pecheva E; Krastev V; Riesz F J Mater Sci Mater Med; 2007 Mar; 18(3):435-40. PubMed ID: 17334693 [TBL] [Abstract][Full Text] [Related]
2. Ion implantation modified stainless steel as a substrate for hydroxyapatite deposition. Part II. Biomimetic layer growth and characterization. Pramatarova L; Pecheva E; Krastev V J Mater Sci Mater Med; 2007 Mar; 18(3):441-7. PubMed ID: 17334694 [TBL] [Abstract][Full Text] [Related]
3. Laser surface alloying of 316L stainless steel coated with a bioactive hydroxyapatite-titanium oxide composite. Ghaith el-S; Hodgson S; Sharp M J Mater Sci Mater Med; 2015 Feb; 26(2):83. PubMed ID: 25636972 [TBL] [Abstract][Full Text] [Related]
4. Chemical, corrosion and topographical analysis of stainless steel implants after different implantation periods. Chrzanowski W; Armitage DA; Knowles JC; Szade J; Korlacki W; Marciniak J J Biomater Appl; 2008 Jul; 23(1):51-71. PubMed ID: 18467745 [TBL] [Abstract][Full Text] [Related]
5. Bone quality around bioactive silica-based coated stainless steel implants: analysis by micro-Raman, XRF and XAS techniques. Ballarre J; Desimone PM; Chorro M; Baca M; Orellano JC; Ceré SM J Struct Biol; 2013 Nov; 184(2):164-72. PubMed ID: 24076155 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of sol-gel hydroxyapatite and its electrochemical evaluation for biomedical applications. Vijayalakshmi U; Prabakaran K; Rajeswari S J Biomed Mater Res A; 2008 Dec; 87(3):739-49. PubMed ID: 18200538 [TBL] [Abstract][Full Text] [Related]
7. Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol-gel coatings of stainless steel implants. Ballarre J; Manjubala I; Schreiner WH; Orellano JC; Fratzl P; Ceré S Acta Biomater; 2010 Apr; 6(4):1601-9. PubMed ID: 19835999 [TBL] [Abstract][Full Text] [Related]
8. Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes. Meylheuc T; Methivier C; Renault M; Herry JM; Pradier CM; Bellon-Fontaine MN Colloids Surf B Biointerfaces; 2006 Oct; 52(2):128-37. PubMed ID: 16781848 [TBL] [Abstract][Full Text] [Related]
9. Surface modification of stainless steel by plasma-based fluorine and silver dual ion implantation and deposition. Shinonaga Y; Arita K Dent Mater J; 2009 Nov; 28(6):735-42. PubMed ID: 20019426 [TBL] [Abstract][Full Text] [Related]
10. Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications. Haïdopoulos M; Turgeon S; Sarra-Bournet C; Laroche G; Mantovani D J Mater Sci Mater Med; 2006 Jul; 17(7):647-57. PubMed ID: 16770550 [TBL] [Abstract][Full Text] [Related]
11. Enhanced in-vitro blood compatibility of 316L stainless steel surfaces by reactive landing of hyaluronan ions. Volný M; Elam WT; Ratner BD; Turecek F J Biomed Mater Res B Appl Biomater; 2007 Feb; 80(2):505-10. PubMed ID: 16838347 [TBL] [Abstract][Full Text] [Related]
12. Biological effects of sol-gel derived ZrO2 and SiO2/ZrO2 coatings on stainless steel surface--In vitro model using mesenchymal stem cells. Smieszek A; Donesz-Sikorska A; Grzesiak J; Krzak J; Marycz K J Biomater Appl; 2014 Nov; 29(5):699-714. PubMed ID: 25074359 [TBL] [Abstract][Full Text] [Related]
13. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246 [TBL] [Abstract][Full Text] [Related]
14. Effect of phosphorous ion implantation on the mechanical properties and bioactivity of hydroxyapatite. Kobayashi S; Muramatsu T; Teranishi Y J Mater Sci Mater Med; 2015 Jan; 26(1):5351. PubMed ID: 25578705 [TBL] [Abstract][Full Text] [Related]
15. Biomineralization of 2304 duplex stainless steel with surface modification by electrophoretic deposition. Hammood AS J Appl Biomater Funct Mater; 2020; 18():2280800019896215. PubMed ID: 32238030 [TBL] [Abstract][Full Text] [Related]
16. Hydroxyapatite coating on stainless steel pre-coated with bovine serum albumin at ambient conditions. Nayar S; Pramanick AK; Sharma BK; Mishra RK; Bansal SK; Prajapati A; Sahu KK; Das SK; Pathak L; Sinha A Colloids Surf B Biointerfaces; 2006 Mar; 48(2):183-7. PubMed ID: 16540296 [TBL] [Abstract][Full Text] [Related]
17. Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite. Balla VK; Das M; Bose S; Ram GD; Manna I Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4594-8. PubMed ID: 24094165 [TBL] [Abstract][Full Text] [Related]
18. Surface modification of stainless steel for biomedical applications: Revisiting a century-old material. Bekmurzayeva A; Duncanson WJ; Azevedo HS; Kanayeva D Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():1073-1089. PubMed ID: 30274039 [TBL] [Abstract][Full Text] [Related]
19. In vitro response of human peripheral blood mononuclear cells to AISI 316L austenitic stainless steel subjected to nitriding and collagen coating treatments. Stio M; Martinesi M; Treves C; Borgioli F J Mater Sci Mater Med; 2015 Feb; 26(2):100. PubMed ID: 25655502 [TBL] [Abstract][Full Text] [Related]
20. Atomic layer deposition enhanced grafting of phosphorylcholine on stainless steel for intravascular stents. Zhong Q; Yan J; Qian X; Zhang T; Zhang Z; Li A Colloids Surf B Biointerfaces; 2014 Sep; 121():238-47. PubMed ID: 25016426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]