These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17334857)

  • 1. Single-cell Raman spectral profiles of Pseudomonas fluorescens SBW25 reflects in vitro and in planta metabolic history.
    Huang WE; Bailey MJ; Thompson IP; Whiteley AS; Spiers AJ
    Microb Ecol; 2007 Apr; 53(3):414-25. PubMed ID: 17334857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic characterization of Pseudomonas fluorescens SBW25 rsp gene expression in the phytosphere and in vitro.
    Jackson RW; Preston GM; Rainey PB
    J Bacteriol; 2005 Dec; 187(24):8477-88. PubMed ID: 16321952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The environmental plasmid pQBR103 alters the single-cell Raman spectral profile of Pseudomonas fluorescens SBW25.
    Ude S; Bailey MJ; Huang WE; Spiers AJ
    Microb Ecol; 2007 Apr; 53(3):494-7. PubMed ID: 17431708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas fluorescens SBW25 biofilm and planktonic cells have differentiable Raman spectral profiles.
    Huang WE; Ude S; Spiers AJ
    Microb Ecol; 2007 Apr; 53(3):471-4. PubMed ID: 17345138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB
    BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic characterization of psp encoding the DING protein in Pseudomonas fluorescens SBW25.
    Zhang XX; Scott K; Meffin R; Rainey PB
    BMC Microbiol; 2007 Dec; 7():114. PubMed ID: 18088430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25.
    Preston GM; Bertrand N; Rainey PB
    Mol Microbiol; 2001 Sep; 41(5):999-1014. PubMed ID: 11555282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of a P1-type ATPase from Pseudomonas fluorescens SBW25 in copper homeostasis and plant colonization.
    Zhang XX; Rainey PB
    Mol Plant Microbe Interact; 2007 May; 20(5):581-8. PubMed ID: 17506335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Jones J; Studholme DJ; Knight CG; Preston GM
    Environ Microbiol; 2007 Dec; 9(12):3046-64. PubMed ID: 17991033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The histidine utilization (hut) genes of Pseudomonas fluorescens SBW25 are active on plant surfaces, but are not required for competitive colonization of sugar beet seedlings.
    Zhang XX; George A; Bailey MJ; Rainey PB
    Microbiology (Reading); 2006 Jun; 152(Pt 6):1867-1875. PubMed ID: 16735749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonas fluorescens SBW25 produces furanomycin, a non-proteinogenic amino acid with selective antimicrobial properties.
    Trippe K; McPhail K; Armstrong D; Azevedo M; Banowetz G
    BMC Microbiol; 2013 May; 13():111. PubMed ID: 23688329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Regulatory Roles of the Histidine-Responsive Transcriptional Repressor HutC in Pseudomonas fluorescens SBW25.
    Naren N; Zhang XX
    J Bacteriol; 2020 Jun; 202(13):. PubMed ID: 32291279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Interactions between
    Boiteau RM; Markillie LM; Hoyt DW; Hu D; Chu RK; Mitchell HD; Pasa-Tolic L; Jansson JK; Jansson C
    mSystems; 2021 Jan; 6(1):. PubMed ID: 33402348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of the histidine utilization (hut) genes in Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    Genetics; 2007 Aug; 176(4):2165-76. PubMed ID: 17717196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces.
    Gal M; Preston GM; Massey RC; Spiers AJ; Rainey PB
    Mol Ecol; 2003 Nov; 12(11):3109-21. PubMed ID: 14629390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere.
    Nielsen TH; Sørensen J
    Appl Environ Microbiol; 2003 Feb; 69(2):861-8. PubMed ID: 12571005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and validation of a neutrally-marked strain of Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    J Microbiol Methods; 2007 Oct; 71(1):78-81. PubMed ID: 17669526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Plasmid pQBR103 Acquisition and Carriage on the Phytosphere Fitness of Pseudomonas fluorescens SBW25: Burden and Benefit.
    Lilley AK; Bailey MJ
    Appl Environ Microbiol; 1997 Apr; 63(4):1584-7. PubMed ID: 16535581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gac-mediated changes in pyrroloquinoline quinone biosynthesis enhance the antimicrobial activity of Pseudomonas fluorescens SBW25.
    Cheng X; van der Voort M; Raaijmakers JM
    Environ Microbiol Rep; 2015 Feb; 7(1):139-47. PubMed ID: 25356880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental evolution of Pseudomonas fluorescens in simple and complex environments.
    Barrett RD; MacLean RC; Bell G
    Am Nat; 2005 Oct; 166(4):470-80. PubMed ID: 16224703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.