These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 17334987)

  • 1. Interfacing Q-Chem and CHARMM to perform QM/MM reaction path calculations.
    Woodcock HL; Hodošček M; Gilbert ATB; Gill PMW; Schaefer HF; Brooks BR
    J Comput Chem; 2007 Jul; 28(9):1485-1502. PubMed ID: 17334987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring SCC-DFTB paths for mapping QM/MM reaction mechanisms.
    Woodcock HL; Hodoscek M; Brooks BR
    J Phys Chem A; 2007 Jul; 111(26):5720-8. PubMed ID: 17555303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction.
    Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ
    Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Projector-Based Embedding Eliminates Density Functional Dependence for QM/MM Calculations of Reactions in Enzymes and Solution.
    Ranaghan KE; Shchepanovska D; Bennie SJ; Lawan N; Macrae SJ; Zurek J; Manby FR; Mulholland AJ
    J Chem Inf Model; 2019 May; 59(5):2063-2078. PubMed ID: 30794388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems.
    Sokkar P; Boulanger E; Thiel W; Sanchez-Garcia E
    J Chem Theory Comput; 2015 Apr; 11(4):1809-18. PubMed ID: 26574388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QM/MM calculations of kinetic isotope effects in the chorismate mutase active site.
    Martí S; Moliner V; Tuñón I; Williams IH
    Org Biomol Chem; 2003 Feb; 1(3):483-7. PubMed ID: 12926249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of chorismate mutase catalysis by QM/MM modelling of enzyme-catalysed and uncatalysed reactions.
    Claeyssens F; Ranaghan KE; Lawan N; Macrae SJ; Manby FR; Harvey JN; Mulholland AJ
    Org Biomol Chem; 2011 Mar; 9(5):1578-90. PubMed ID: 21243152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of MM Polarization in QM/MM Studies of Enzymatic Reactions: Assessment of the QM/MM Drude Oscillator Model.
    Ganguly A; Boulanger E; Thiel W
    J Chem Theory Comput; 2017 Jun; 13(6):2954-2961. PubMed ID: 28437096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacing the GROMOS (bio)molecular simulation software to quantum-chemical program packages.
    Meier K; Schmid N; van Gunsteren WF
    J Comput Chem; 2012 Oct; 33(26):2108-17. PubMed ID: 22736402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods for enzymic reactions. II. An energy decomposition analysis.
    Titmuss SJ; Cummins PL; Rendell AP; Bliznyuk AA; Gready JE
    J Comput Chem; 2002 Nov; 23(14):1314-22. PubMed ID: 12214314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic Boundary Conditions in QM/MM Calculations: Implementation and Tests.
    Vasilevskaya T; Thiel W
    J Chem Theory Comput; 2016 Aug; 12(8):3561-70. PubMed ID: 27420296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The QM-MM interface for CHARMM-deMon.
    Lev B; Zhang R; de la Lande A; Salahub D; Noskov SY
    J Comput Chem; 2010 Apr; 31(5):1015-23. PubMed ID: 20027641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QuanPol: a full spectrum and seamless QM/MM program.
    Thellamurege NM; Si D; Cui F; Zhu H; Lai R; Li H
    J Comput Chem; 2013 Dec; 34(32):2816-33. PubMed ID: 24122765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing protein environment in an enzymatic process: All-electron quantum chemical analysis combined with ab initio quantum mechanical/molecular mechanical modeling of chorismate mutase.
    Ishida T
    J Chem Phys; 2008 Sep; 129(12):125105. PubMed ID: 19045066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field.
    Szefczyk B; Mulholland AJ; Ranaghan KE; Sokalski WA
    J Am Chem Soc; 2004 Dec; 126(49):16148-59. PubMed ID: 15584751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a 3-body:many-body integrated fragmentation method for weakly bound clusters and application to water clusters (H2O)(n = 3-10, 16, 17).
    Bates DM; Smith JR; Janowski T; Tschumper GS
    J Chem Phys; 2011 Jul; 135(4):044123. PubMed ID: 21806106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergence in the QM-only and QM/MM modeling of enzymatic reactions: A case study for acetylene hydratase.
    Liao RZ; Thiel W
    J Comput Chem; 2013 Oct; 34(27):2389-97. PubMed ID: 23913757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A definitive mechanism for chorismate mutase.
    Zhang X; Zhang X; Bruice TC
    Biochemistry; 2005 Aug; 44(31):10443-8. PubMed ID: 16060652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.