BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 17335021)

  • 1. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.
    Mueller Y; Tognini R; Mayer J; Virtanen S
    J Biomed Mater Res A; 2007 Sep; 82(4):936-46. PubMed ID: 17335021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro corrosion of Ti-6Al-4V and type 316L stainless steel when galvanically coupled with carbon.
    Thompson NG; Buchanan RA; Lemons JE
    J Biomed Mater Res; 1979 Jan; 13(1):35-44. PubMed ID: 429383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemistry of galvanic couples between carbon and common metallic biomaterials in the presence of crevices.
    Silva RA; Barbosa MA; Jenkins GM; Sutherland I
    Biomaterials; 1990 Jul; 11(5):336-40. PubMed ID: 2400800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility.
    Zitter H; Plenk H
    J Biomed Mater Res; 1987 Jul; 21(7):881-96. PubMed ID: 3611146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Can steel screws be combined with titanium plates? Hard polishing technique and SEM in animal experiments].
    Wächter R; Stoll P
    Dtsch Z Mund Kiefer Gesichtschir; 1991; 15(4):275-84. PubMed ID: 1816958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of static stress on the corrosion behavior of 316L stainless steel in Ringer's solution.
    Bundy KJ; Vogelbaum MA; Desai VH
    J Biomed Mater Res; 1986 Apr; 20(4):493-505. PubMed ID: 3700443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial corrosion of stainless steel.
    Ibars JR; Moreno DA; Ranninger C
    Microbiologia; 1992 Nov; 8(2):63-75. PubMed ID: 1492953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility studies on surgical-grade titanium-, cobalt-, and iron-base alloys.
    Lemons JE; Niemann KM; Weiss AB
    J Biomed Mater Res; 1976 Jul; 10(4):549-53. PubMed ID: 947918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The concept of protection potential applied to the corrosion of metallic orthopedic implants.
    Cahoon JR; Bandyopadhya R; Tennese L
    J Biomed Mater Res; 1975 May; 9(3):259-64. PubMed ID: 1176484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duplex stainless steels for osteosynthesis devices.
    Cigada A; Rondelli G; Vicentini B; Giacomazzi M; Roos A
    J Biomed Mater Res; 1989 Sep; 23(9):1087-95. PubMed ID: 2777835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galvanic couples of 316L steel with Ti and ion plated Ti and TiN coatings in Ringer's solutions.
    Gluszek J; Jedrkowiak J; Markowski J; Masalski J
    Biomaterials; 1990 Jul; 11(5):330-5. PubMed ID: 2400799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro crevice corrosion behavior of implant materials.
    Sutow EJ; Jones DW; Milne EL
    J Dent Res; 1985 May; 64(5):842-7. PubMed ID: 3858307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro studies of fretting corrosion of orthopaedic materials.
    Brown SA; Hughes PJ; Merritt K
    J Orthop Res; 1988; 6(4):572-9. PubMed ID: 3379510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the corrosion susceptibility of metallic cement restrictors: comparative corrosion behavior of stainless steel and cobalt-chromium alloys.
    Pugh J; Jaffe WL; Kummer FJ
    Bull Hosp Joint Dis; 1976 Apr; 37(1):40-53. PubMed ID: 974288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The adhesion of thin carbon films to metallic substrates.
    Shim HS; Agarwal NK; Haubold AD
    J Bioeng; 1976 Nov; 1(1):45-50. PubMed ID: 1052522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical studies on the influence of proteins on the corrosion of implant alloys.
    Williams RL; Brown SA; Merritt K
    Biomaterials; 1988 Mar; 9(2):181-6. PubMed ID: 3370285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion studies on metallic implant materials.
    Cahoon JR; Chaturvedi MC; Tennese WW
    Med Instrum; 1973; 7(2):131-5. PubMed ID: 4718486
    [No Abstract]   [Full Text] [Related]  

  • 18. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.
    Eric Jones J; Chen M; Yu Q
    J Biomed Mater Res B Appl Biomater; 2014 Oct; 102(7):1363-74. PubMed ID: 24500866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influences of electrical potential and surface finish on the fatigue life of surgical implant materials.
    Bapna MS; Lautenschlager EP; Moser JB
    J Biomed Mater Res; 1975 Nov; 9(6):611-21. PubMed ID: 1184609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The corrosion fatigue properties of surgical implants in a living body.
    Morita M; Sasada T; Hayashi H; Tsukamoto Y
    J Biomed Mater Res; 1988 Jun; 22(6):529-40. PubMed ID: 3410871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.