These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 17335023)
1. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. Motlagh D; Allen J; Hoshi R; Yang J; Lui K; Ameer G J Biomed Mater Res A; 2007 Sep; 82(4):907-16. PubMed ID: 17335023 [TBL] [Abstract][Full Text] [Related]
2. A new biodegradable polyester elastomer for cartilage tissue engineering. Kang Y; Yang J; Khan S; Anissian L; Ameer GA J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714 [TBL] [Abstract][Full Text] [Related]
3. Toward engineering a human neoendothelium with circulating progenitor cells. Allen JB; Khan S; Lapidos KA; Ameer GA Stem Cells; 2010 Feb; 28(2):318-28. PubMed ID: 20013827 [TBL] [Abstract][Full Text] [Related]
4. Characterization of porcine circulating progenitor cells: toward a functional endothelium. Allen J; Khan S; Serrano MC; Ameer G Tissue Eng Part A; 2008 Jan; 14(1):183-94. PubMed ID: 18333816 [TBL] [Abstract][Full Text] [Related]
5. Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Hidalgo-Bastida LA; Barry JJ; Everitt NM; Rose FR; Buttery LD; Hall IP; Claycomb WC; Shakesheff KM Acta Biomater; 2007 Jul; 3(4):457-62. PubMed ID: 17321810 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Yang J; Webb AR; Pickerill SJ; Hageman G; Ameer GA Biomaterials; 2006 Mar; 27(9):1889-98. PubMed ID: 16290904 [TBL] [Abstract][Full Text] [Related]
7. In vitro characterization of a compliant biodegradable scaffold with a novel bioreactor system. Webb AR; Macrie BD; Ray AS; Russo JE; Siegel AM; Glucksberg MR; Ameer GA Ann Biomed Eng; 2007 Aug; 35(8):1357-67. PubMed ID: 17415660 [TBL] [Abstract][Full Text] [Related]
8. Preparation of porcine carotid arteries for vascular tissue engineering applications. McFetridge PS; Daniel JW; Bodamyali T; Horrocks M; Chaudhuri JB J Biomed Mater Res A; 2004 Aug; 70(2):224-34. PubMed ID: 15227667 [TBL] [Abstract][Full Text] [Related]
9. Regulation of endothelial cell phenotype by biomimetic matrix coated on biomaterials for cardiovascular tissue engineering. Prasad CK; Krishnan LK Acta Biomater; 2008 Jan; 4(1):182-91. PubMed ID: 17643359 [TBL] [Abstract][Full Text] [Related]
10. Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Motlagh D; Yang J; Lui KY; Webb AR; Ameer GA Biomaterials; 2006 Aug; 27(24):4315-24. PubMed ID: 16675010 [TBL] [Abstract][Full Text] [Related]
11. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Nakabayashi N; Iwasaki Y Biomed Mater Eng; 2004; 14(4):345-54. PubMed ID: 15472384 [TBL] [Abstract][Full Text] [Related]
12. Polyelectrolyte multilayer film on decellularized porcine aortic valve can reduce the adhesion of blood cells without affecting the growth of human circulating progenitor cells. Ye X; Hu X; Wang H; Liu J; Zhao Q Acta Biomater; 2012 Mar; 8(3):1057-67. PubMed ID: 22122977 [TBL] [Abstract][Full Text] [Related]
13. Hemocompatibility evaluation of poly(1,8-octanediol citrate) blend polyethersulfone membranes. Zailani MZ; Ismail AF; Sheikh Abdul Kadir SH; Othman MH; Goh PS; Hasbullah H; Abdullah MS; Ng BC; Kamal F J Biomed Mater Res A; 2017 May; 105(5):1510-1520. PubMed ID: 28000366 [TBL] [Abstract][Full Text] [Related]
14. The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Hoshi RA; Van Lith R; Jen MC; Allen JB; Lapidos KA; Ameer G Biomaterials; 2013 Jan; 34(1):30-41. PubMed ID: 23069711 [TBL] [Abstract][Full Text] [Related]
15. Hemocompatibility evaluation of small elastomeric hollow fiber membranes as vascular substitutes. Mercado-Pagán ÁE; Ker DF; Yang Y J Biomater Appl; 2014 Oct; 29(4):557-65. PubMed ID: 24913612 [TBL] [Abstract][Full Text] [Related]
16. Cell attachment and growth on films prepared from poly(depsipeptide-co-lactide) having various functional groups. Ohya Y; Matsunami H; Yamabe E; Ouchi T J Biomed Mater Res A; 2003 Apr; 65(1):79-88. PubMed ID: 12635157 [TBL] [Abstract][Full Text] [Related]
17. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Wise SG; Byrom MJ; Waterhouse A; Bannon PG; Weiss AS; Ng MK Acta Biomater; 2011 Jan; 7(1):295-303. PubMed ID: 20656079 [TBL] [Abstract][Full Text] [Related]
18. Biological performances of collagen-based scaffolds for vascular tissue engineering. Boccafoschi F; Habermehl J; Vesentini S; Mantovani D Biomaterials; 2005 Dec; 26(35):7410-7. PubMed ID: 15998538 [TBL] [Abstract][Full Text] [Related]
19. Biological performance of biodegradable amino acid-based poly(ester amide)s: Endothelial cell adhesion and inflammation in vitro. Horwitz JA; Shum KM; Bodle JC; Deng M; Chu CC; Reinhart-King CA J Biomed Mater Res A; 2010 Nov; 95(2):371-80. PubMed ID: 20629024 [TBL] [Abstract][Full Text] [Related]
20. Biodegradable nitric oxide-releasing poly(diol citrate) elastomers. Zhao H; Serrano MC; Popowich DA; Kibbe MR; Ameer GA J Biomed Mater Res A; 2010 Apr; 93(1):356-63. PubMed ID: 19569216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]