These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
524 related articles for article (PubMed ID: 17335078)
21. Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3'-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani. Roy A; Ganguly A; BoseDasgupta S; Das BB; Pal C; Jaisankar P; Majumder HK Mol Pharmacol; 2008 Nov; 74(5):1292-307. PubMed ID: 18703668 [TBL] [Abstract][Full Text] [Related]
22. Glutamate-stimulated ROS production in neuronal cultures: interactions with lead and the cholinergic system. Savolainen KM; Loikkanen J; Eerikäinen S; Naarala J Neurotoxicology; 1998; 19(4-5):669-74. PubMed ID: 9745927 [TBL] [Abstract][Full Text] [Related]
23. Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: Mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Poon HF; Shepherd HM; Reed TT; Calabrese V; Stella AM; Pennisi G; Cai J; Pierce WM; Klein JB; Butterfield DA Neurobiol Aging; 2006 Jul; 27(7):1020-34. PubMed ID: 15996793 [TBL] [Abstract][Full Text] [Related]
24. Hyperoxia and thyroxine treatment and the relationships between reactive oxygen species generation, mitochondrial membrane potential, and cardiolipin in human lens epithelial cell cultures. Huang L; Yappert MC; Jumblatt MM; Borchman D Curr Eye Res; 2008 Jul; 33(7):575-86. PubMed ID: 18600490 [TBL] [Abstract][Full Text] [Related]
25. Pharmacological investigation of mitochondrial ca(2+) transport in central neurons: studies with CGP-37157, an inhibitor of the mitochondrial Na(+)-Ca(2+) exchanger. Scanlon JM; Brocard JB; Stout AK; Reynolds IJ Cell Calcium; 2000; 28(5-6):317-27. PubMed ID: 11115371 [TBL] [Abstract][Full Text] [Related]
26. Reactive oxygen species-induced cell death of rat primary astrocytes through mitochondria-mediated mechanism. Wang CC; Fang KM; Yang CS; Tzeng SF J Cell Biochem; 2009 Aug; 107(5):933-43. PubMed ID: 19459161 [TBL] [Abstract][Full Text] [Related]
27. Effects of Epigallocatechin-3-gallate on lead-induced oxidative damage. Yin ST; Tang ML; Su L; Chen L; Hu P; Wang HL; Wang M; Ruan DY Toxicology; 2008 Jul; 249(1):45-54. PubMed ID: 18499326 [TBL] [Abstract][Full Text] [Related]
28. Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius. Martin C; Dubouchaud H; Mosoni L; Chardigny JM; Oudot A; Fontaine E; Vergely C; Keriel C; Rochette L; Leverve X; Demaison L Aging Cell; 2007 Apr; 6(2):165-77. PubMed ID: 17286611 [TBL] [Abstract][Full Text] [Related]
29. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Kaur P; Radotra B; Minz RW; Gill KD Neurotoxicology; 2007 Nov; 28(6):1208-19. PubMed ID: 17850875 [TBL] [Abstract][Full Text] [Related]
30. Mitochondrial dysfunction in rat brain with aging Involvement of complex I, reactive oxygen species and cardiolipin. Petrosillo G; Matera M; Casanova G; Ruggiero FM; Paradies G Neurochem Int; 2008 Nov; 53(5):126-31. PubMed ID: 18657582 [TBL] [Abstract][Full Text] [Related]
31. Implication of PTEN in production of reactive oxygen species and neuronal death in in vitro models of stroke and Parkinson's disease. Zhu Y; Hoell P; Ahlemeyer B; Sure U; Bertalanffy H; Krieglstein J Neurochem Int; 2007 Feb; 50(3):507-16. PubMed ID: 17169462 [TBL] [Abstract][Full Text] [Related]
32. Low dose (-)deprenyl is cytoprotective: it maintains mitochondrial membrane potential and eliminates oxygen radicals. Simon L; Szilágyi G; Bori Z; Telek G; Magyar K; Nagy Z Life Sci; 2005 Dec; 78(3):225-31. PubMed ID: 16242156 [TBL] [Abstract][Full Text] [Related]
33. 'Mild Uncoupling' does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress. Johnson-Cadwell LI; Jekabsons MB; Wang A; Polster BM; Nicholls DG J Neurochem; 2007 Jun; 101(6):1619-31. PubMed ID: 17437552 [TBL] [Abstract][Full Text] [Related]
34. Molecular mechanisms of glutamate neurotoxicity in mixed cultures of NT2-derived neurons and astrocytes: protective effects of coenzyme Q10. Sandhu JK; Pandey S; Ribecco-Lutkiewicz M; Monette R; Borowy-Borowski H; Walker PR; Sikorska M J Neurosci Res; 2003 Jun; 72(6):691-703. PubMed ID: 12774309 [TBL] [Abstract][Full Text] [Related]
35. Effect of graded corticosterone treatment on aging-related markers of oxidative stress in rat liver mitochondria. Caro P; Gómez J; Sanz A; Portero-Otín M; Pamplona R; Barja G Biogerontology; 2007 Feb; 8(1):1-11. PubMed ID: 16823605 [TBL] [Abstract][Full Text] [Related]
36. Reactive oxygen species generation is modulated by mitochondrial kinases: correlation with mitochondrial antioxidant peroxidases in rat tissues. Santiago AP; Chaves EA; Oliveira MF; Galina A Biochimie; 2008 Oct; 90(10):1566-77. PubMed ID: 18634844 [TBL] [Abstract][Full Text] [Related]
37. Possible protection by notoginsenoside R1 against glutamate neurotoxicity mediated by N-methyl-D-aspartate receptors composed of an NR1/NR2B subunit assembly. Gu B; Nakamichi N; Zhang WS; Nakamura Y; Kambe Y; Fukumori R; Takuma K; Yamada K; Takarada T; Taniura H; Yoneda Y J Neurosci Res; 2009 Jul; 87(9):2145-56. PubMed ID: 19224577 [TBL] [Abstract][Full Text] [Related]
38. Reactive oxygen species: stuck in the middle of neurodegeneration. Patten DA; Germain M; Kelly MA; Slack RS J Alzheimers Dis; 2010; 20 Suppl 2():S357-67. PubMed ID: 20421690 [TBL] [Abstract][Full Text] [Related]
39. Stabilization of mitochondrial function by tetramethylpyrazine protects against kainate-induced oxidative lesions in the rat hippocampus. Li SY; Jia YH; Sun WG; Tang Y; An GS; Ni JH; Jia HT Free Radic Biol Med; 2010 Feb; 48(4):597-608. PubMed ID: 20006702 [TBL] [Abstract][Full Text] [Related]
40. Reactive oxygen species regulate Bax translocation and mitochondrial transmembrane potential, a possible mechanism for enhanced TRAIL-induced apoptosis by CCCP. Chaudhari AA; Seol JW; Kim SJ; Lee YJ; Kang HS; Kim IS; Kim NS; Park SY Oncol Rep; 2007 Jul; 18(1):71-6. PubMed ID: 17549348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]