These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 17335846)
1. Haploinsuffciency for Znf9 in Znf9+/- mice is associated with multiorgan abnormalities resembling myotonic dystrophy. Chen W; Wang Y; Abe Y; Cheney L; Udd B; Li YP J Mol Biol; 2007 Apr; 368(1):8-17. PubMed ID: 17335846 [TBL] [Abstract][Full Text] [Related]
2. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Liquori CL; Ricker K; Moseley ML; Jacobsen JF; Kress W; Naylor SL; Day JW; Ranum LP Science; 2001 Aug; 293(5531):864-7. PubMed ID: 11486088 [TBL] [Abstract][Full Text] [Related]
3. Muscleblind-like 2 (Mbnl2) -deficient mice as a model for myotonic dystrophy. Hao M; Akrami K; Wei K; De Diego C; Che N; Ku JH; Tidball J; Graves MC; Shieh PB; Chen F Dev Dyn; 2008 Feb; 237(2):403-10. PubMed ID: 18213585 [TBL] [Abstract][Full Text] [Related]
4. Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene. Sun C; Van Ghelue M; Tranebjærg L; Thyssen F; Nilssen Ø; Torbergsen T Clin Genet; 2011 Dec; 80(6):574-80. PubMed ID: 21204798 [TBL] [Abstract][Full Text] [Related]
6. Unusual clinical, laboratory, and muscle histopathological findings in a family with myotonic dystrophy type 2. Toth C; Dunham C; Suchowersky O; Parboosingh J; Brownell K Muscle Nerve; 2007 Feb; 35(2):259-64. PubMed ID: 17068784 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a single nucleotide polymorphism in the ZNF9 gene and analysis of association with myotonic dystrophy type II (DM2) in the Italian population. Vallo L; Bonifazi E; Borgiani P; Novelli G; Botta A Mol Cell Probes; 2005 Feb; 19(1):71-4. PubMed ID: 15652222 [TBL] [Abstract][Full Text] [Related]
8. A non-DM1, non-DM2 multisystem myotonic disorder with frontotemporal dementia: phenotype and suggestive mapping of the DM3 locus to chromosome 15q21-24. Le Ber I; Martinez M; Campion D; Laquerrière A; Bétard C; Bassez G; Girard C; Saugier-Veber P; Raux G; Sergeant N; Magnier P; Maisonobe T; Eymard B; Duyckaerts C; Delacourte A; Frebourg T; Hannequin D Brain; 2004 Sep; 127(Pt 9):1979-92. PubMed ID: 15215218 [TBL] [Abstract][Full Text] [Related]
9. Effect of the [CCTG]n repeat expansion on ZNF9 expression in myotonic dystrophy type II (DM2). Botta A; Caldarola S; Vallo L; Bonifazi E; Fruci D; Gullotta F; Massa R; Novelli G; Loreni F Biochim Biophys Acta; 2006 Mar; 1762(3):329-34. PubMed ID: 16376058 [TBL] [Abstract][Full Text] [Related]
10. DM2 intronic expansions: evidence for CCUG accumulation without flanking sequence or effects on ZNF9 mRNA processing or protein expression. Margolis JM; Schoser BG; Moseley ML; Day JW; Ranum LP Hum Mol Genet; 2006 Jun; 15(11):1808-15. PubMed ID: 16624843 [TBL] [Abstract][Full Text] [Related]
11. Homozygosity for CCTG mutation in myotonic dystrophy type 2. Schoser BG; Kress W; Walter MC; Halliger-Keller B; Lochmüller H; Ricker K Brain; 2004 Aug; 127(Pt 8):1868-77. PubMed ID: 15231584 [TBL] [Abstract][Full Text] [Related]
12. A long PCR-based molecular protocol for detecting normal and expanded ZNF9 alleles in myotonic dystrophy type 2. Bonifazi E; Vallo L; Giardina E; Botta A; Novelli G Diagn Mol Pathol; 2004 Sep; 13(3):164-6. PubMed ID: 15322428 [TBL] [Abstract][Full Text] [Related]
13. [Molecular and genetic aspects of the myotonic conditions]. Morales Montero F; Cuenca Berger P Rev Neurol; 2004 Apr 1-15; 38(7):668-74. PubMed ID: 15098190 [TBL] [Abstract][Full Text] [Related]
14. New methods for molecular diagnosis and demonstration of the (CCTG)n mutation in myotonic dystrophy type 2 (DM2). Sallinen R; Vihola A; Bachinski LL; Huoponen K; Haapasalo H; Hackman P; Zhang S; Sirito M; Kalimo H; Meola G; Horelli-Kuitunen N; Wessman M; Krahe R; Udd B Neuromuscul Disord; 2004 Apr; 14(4):274-83. PubMed ID: 15019706 [TBL] [Abstract][Full Text] [Related]
15. CCUG repeats reduce the rate of global protein synthesis in myotonic dystrophy type 2. Schneider-Gold C; Timchenko LT Rev Neurosci; 2010; 21(1):19-28. PubMed ID: 20458885 [TBL] [Abstract][Full Text] [Related]
16. Aberrantly spliced alpha-dystrobrevin alters alpha-syntrophin binding in myotonic dystrophy type 1. Nakamori M; Kimura T; Kubota T; Matsumura T; Sumi H; Fujimura H; Takahashi MP; Sakoda S Neurology; 2008 Feb; 70(9):677-85. PubMed ID: 18299519 [TBL] [Abstract][Full Text] [Related]
17. [Cardiac, respiratory and sleep disorders in patients with myotonic dystrophy]. Banach M; Rakowicz M; Antczak J; Rola R; Witkowski G; Waliniowska E Przegl Lek; 2009; 66(12):1065-8. PubMed ID: 20514907 [TBL] [Abstract][Full Text] [Related]
18. Clinical and molecular aspects of the myotonic dystrophies: a review. Machuca-Tzili L; Brook D; Hilton-Jones D Muscle Nerve; 2005 Jul; 32(1):1-18. PubMed ID: 15770660 [TBL] [Abstract][Full Text] [Related]
19. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Meola G; Cardani R Biochim Biophys Acta; 2015 Apr; 1852(4):594-606. PubMed ID: 24882752 [TBL] [Abstract][Full Text] [Related]
20. ZNF9 activation of IRES-mediated translation of the human ODC mRNA is decreased in myotonic dystrophy type 2. Sammons MA; Antons AK; Bendjennat M; Udd B; Krahe R; Link AJ PLoS One; 2010 Feb; 5(2):e9301. PubMed ID: 20174632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]