These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17336082)

  • 21. Resuscitation with 100%, compared with 21%, oxygen following brief, repeated periods of apnea can protect vulnerable neonatal brain regions from apoptotic injury.
    Mendoza-Paredes A; Liu H; Schears G; Yu Z; Markowitz SD; Schultz S; Pastuszko P; Greeley WJ; Nadkarni V; Kubin J; Wilson DF; Pastuszko A
    Resuscitation; 2008 Feb; 76(2):261-70. PubMed ID: 17765386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antegrade cerebral perfusion during deep hypothermia circulatory arrest attenuates the apoptosis of neurons in porcine hippocampus.
    Zhao R; Cui Q; Yu SQ; Sun GC; Wang HB; Jin ZX; Gu CH; Yi DH
    Heart Surg Forum; 2009 Aug; 12(4):E219-24. PubMed ID: 19683993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Granulocyte colony stimulating factor reduces brain injury in a cardiopulmonary bypass-circulatory arrest model of ischemia in a newborn piglet.
    Pastuszko P; Schears GJ; Greeley WJ; Kubin J; Wilson DF; Pastuszko A
    Neurochem Res; 2014 Nov; 39(11):2085-92. PubMed ID: 25082120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of granulocyte-colony stimulating factor on expression of selected proteins involved in regulation of apoptosis in the brain of newborn piglets after cardiopulmonary bypass and deep hypothermic circulatory arrest.
    Pastuszko P; Schears GJ; Pirzadeh A; Kubin J; Greeley WJ; Wilson DF; Pastuszko A
    J Thorac Cardiovasc Surg; 2012 Jun; 143(6):1436-42. PubMed ID: 22306220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retrograde Cerebral Perfusion Results in Better Perfusion to the Striatum Than the Cerebral Cortex During Deep Hypothermic Circulatory Arrest: A Microdialysis Study.
    Liang MY; Chen GX; Tang ZX; Rong J; Yao JP; Wu ZK
    Artif Organs; 2016 Mar; 40(3):270-7. PubMed ID: 26333187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cerebral mitochondrial dysfunction associated with deep hypothermic circulatory arrest in neonatal swine.
    Mavroudis CD; Karlsson M; Ko T; Hefti M; Gentile JI; Morgan RW; Plyler R; Mensah-Brown KG; Boorady TW; Melchior RW; Rosenthal TM; Shade BC; Schiavo KL; Nicolson SC; Spray TL; Sutton RM; Berg RA; Licht DJ; Gaynor JW; Kilbaugh TJ
    Eur J Cardiothorac Surg; 2018 Jul; 54(1):162-168. PubMed ID: 29346537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered gene expression following cardiopulmonary bypass and circulatory arrest.
    Zaitseva T; Schears G; Shen J; Creed J; Wilson DF; Pastuszko A
    Adv Exp Med Biol; 2003; 530():391-9. PubMed ID: 14562734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Serum UCH-L1 as a Novel Biomarker to Predict Neuronal Apoptosis Following Deep Hypothermic Circulatory Arrest.
    Zhang YP; Zhu YB; Duan DD; Fan XM; He Y; Su JW; Liu YL
    Int J Med Sci; 2015; 12(7):576-82. PubMed ID: 26180514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CREB phosphorylation following hypoxia and ischemia in striatum of newborn piglets: possible role of dopamine.
    Zaitseva T; Creed J; Antoni D; Wilson DF; Pastuszko A
    Brain Res; 2005 Apr; 1040(1-2):169-77. PubMed ID: 15804438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of pH-stat and alpha-stat cardiopulmonary bypass on cerebral oxygenation and blood flow in relation to hypothermic circulatory arrest in piglets.
    Kurth CD; O'Rourke MM; O'Hara IB
    Anesthesiology; 1998 Jul; 89(1):110-8. PubMed ID: 9667301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tissue oxygen tension during regional low-flow perfusion in neonates.
    DeCampli WM; Schears G; Myung R; Schultz S; Creed J; Pastuszko A; Wilson DF
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):472-80. PubMed ID: 12658188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomics of cerebral injury in a neonatal model of cardiopulmonary bypass with deep hypothermic circulatory arrest.
    Sheikh AM; Barrett C; Villamizar N; Alzate O; Miller S; Shelburne J; Lodge A; Lawson J; Jaggers J
    J Thorac Cardiovasc Surg; 2006 Oct; 132(4):820-8. PubMed ID: 17000293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microvascular fluid exchange during CPB with deep hypothermia circulatory arrest or low flow.
    Elvevoll B; Husby P; Kvalheim VL; Stangeland L; Mongstad A; Svendsen ØS
    Perfusion; 2017 Nov; 32(8):661-669. PubMed ID: 28622752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyperoxia management during deep hypothermia for cerebral protection in circulatory arrest rabbit model.
    Wang Q; Yang J; Long C; Zhao J; Li Y; Xue Q; Cheng L; Cheng W
    ASAIO J; 2012; 58(4):330-6. PubMed ID: 22581033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blockade of the extracellular signal-regulated kinase pathway by U0126 attenuates neuronal damage following circulatory arrest.
    Cho DG; Mulloy MR; Chang PA; Johnson MD; Aharon AS; Robison TA; Buckles TL; Byrne DW; Drinkwater DC
    J Thorac Cardiovasc Surg; 2004 Apr; 127(4):1033-40. PubMed ID: 15052200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of cardiopulmonary bypass and deep hypothermic circulatory arrest on blood viscoelasticity and cerebral blood flow in a neonatal piglet model.
    Undar A; Vaughn WK; Calhoon JH
    Perfusion; 2000 Mar; 15(2):121-8. PubMed ID: 10789566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carotid artery Doppler flow pattern after deep hypothermic circulatory arrest in neonatal piglets.
    Tirilomis T; Malliarou S; Coskun KO; Schoendube FA
    Artif Organs; 2014 Jan; 38(1):91-5. PubMed ID: 24206193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept.
    Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of nuclear factor-kappaB improves cardiac dysfunction associated with cardiopulmonary bypass and deep hypothermic circulatory arrest.
    Duffy JY; McLean KM; Lyons JM; Czaikowski AJ; Wagner CJ; Pearl JM
    Crit Care Med; 2009 Feb; 37(2):577-83. PubMed ID: 19114919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-flow cardiopulmonary bypass produces greater pulmonary dysfunction than circulatory arrest.
    Skaryak LA; Lodge AJ; Kirshbom PM; DiBernardo LR; Wilson BG; Meliones JN; Ungerleider RM; Gaynor JW
    Ann Thorac Surg; 1996 Nov; 62(5):1284-8. PubMed ID: 8893558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.