These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 17336364)

  • 21. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification.
    Janssen AJ; Lens PN; Stams AJ; Plugge CM; Sorokin DY; Muyzer G; Dijkman H; Van Zessen E; Luimes P; Buisman CJ
    Sci Total Environ; 2009 Feb; 407(4):1333-43. PubMed ID: 19027933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfate reduction at pH 4 during the thermophilic (55 degrees C) acidification of sucrose in UASB reactors.
    Lopes SI; Capela MI; Dar SA; Muyzer G; Lens PN
    Biotechnol Prog; 2008; 24(6):1278-89. PubMed ID: 19194942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased biological hydrogen production with reduced organic loading.
    Van Ginkel SW; Logan B
    Water Res; 2005 Oct; 39(16):3819-26. PubMed ID: 16129472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sulfate reduction during the acidification of sucrose at pH 5 under thermophilic (55 degrees C) conditions. II: effect of sulfide and COD/SO(2-)(4) ratio.
    Lopes SI; Capela MI; Lens PN
    Bioresour Technol; 2010 Jun; 101(12):4278-84. PubMed ID: 20171883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge.
    Karri S; Sierra-Alvarez R; Field JA
    Biotechnol Bioeng; 2005 Dec; 92(7):810-9. PubMed ID: 16136594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance of a down-flow fluidized bed reactor under sulfate reduction conditions using volatile fatty acids as electron donors.
    Celis-García LB; Razo-Flores E; Monroy O
    Biotechnol Bioeng; 2007 Jul; 97(4):771-9. PubMed ID: 17154309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria.
    Wang A; Ren N; Wang X; Lee D
    J Hazard Mater; 2008 Jun; 154(1-3):1060-5. PubMed ID: 18093734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel biological sulfate reduction method using hydrogenogenic carboxydotrophic mesophilic bacteria.
    Sinharoy A; Manikandan NA; Pakshirajan K
    Bioresour Technol; 2015 Sep; 192():494-500. PubMed ID: 26081625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells.
    Kuo WC; Shu TY
    J Hazard Mater; 2004 Sep; 113(1-3):147-55. PubMed ID: 15363525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor.
    Jong T; Parry DL
    Water Res; 2006 Jul; 40(13):2561-71. PubMed ID: 16814360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ethanol and toluene removal in a horizontal-flow anaerobic immobilized biomass reactor in the presence of sulfate.
    Cattony EB; Chinalia FA; Ribeiro R; Zaiat M; Foresti E; Varesche MB
    Biotechnol Bioeng; 2005 Jul; 91(2):244-53. PubMed ID: 15915510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological conversion of anglesite (PbSO(4)) and lead waste from spent car batteries to galena (PbS).
    Weijma J; De Hoop K; Bosma W; Dijkman H
    Biotechnol Prog; 2002; 18(4):770-5. PubMed ID: 12153311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of feeding strategy on the stability of anaerobic sequencing batch reactor responses to organic loading conditions.
    Cheong DY; Hansen CL
    Bioresour Technol; 2008 Jul; 99(11):5058-68. PubMed ID: 17981029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at low and high temperatures.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Apr; 96(6):1064-72. PubMed ID: 17004272
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge.
    Meulepas RJ; Jagersma CG; Zhang Y; Petrillo M; Cai H; Buisman CJ; Stams AJ; Lens PN
    FEMS Microbiol Ecol; 2010 May; 72(2):261-71. PubMed ID: 20337708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors.
    Lenz M; Hullebusch ED; Hommes G; Corvini PF; Lens PN
    Water Res; 2008 Apr; 42(8-9):2184-94. PubMed ID: 18177686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of COD/SO(4)(2-) ratio and sulfide on thermophilic (55 degrees C) sulfate reduction during the acidification of sucrose at pH 6.
    Lopes SI; Wang X; Capela MI; Lens PN
    Water Res; 2007 Jun; 41(11):2379-92. PubMed ID: 17434203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxicity of copper to acetoclastic and hydrogenotrophic activities of methanogens and sulfate reducers in anaerobic sludge.
    Karri S; Sierra-Alvarez R; Field JA
    Chemosphere; 2006 Jan; 62(1):121-7. PubMed ID: 15936054
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toluene mineralization by denitrification in an up flow anaerobic sludge blanket (UASB) reactor.
    Martínez S; Cuervo-López FM; Gomez J
    Bioresour Technol; 2007 Jul; 98(9):1717-23. PubMed ID: 17029958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.