These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 17336478)
1. Temporal change of composition and potential activity of the thermophilic archaeal community during the composting of organic material. Thummes K; Kämpfer P; Jäckel U Syst Appl Microbiol; 2007 Jul; 30(5):418-29. PubMed ID: 17336478 [TBL] [Abstract][Full Text] [Related]
2. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils. Wu XL; Friedrich MW; Conrad R Environ Microbiol; 2006 Mar; 8(3):394-404. PubMed ID: 16478446 [TBL] [Abstract][Full Text] [Related]
3. Thermophilic methanogenic Archaea in compost material: occurrence, persistence and possible mechanisms for their distribution to other environments. Thummes K; Schäfer J; Kämpfer P; Jäckel U Syst Appl Microbiol; 2007 Dec; 30(8):634-43. PubMed ID: 17988815 [TBL] [Abstract][Full Text] [Related]
4. Seasonality of rDNA- and rRNA-derived archaeal communities and methanogenic potential in a boreal mire. Juottonen H; Tuittila ES; Juutinen S; Fritze H; Yrjälä K ISME J; 2008 Nov; 2(11):1157-68. PubMed ID: 18650929 [TBL] [Abstract][Full Text] [Related]
5. Traditional cattle manure application determines abundance, diversity and activity of methanogenic Archaea in arable European soil. Gattinger A; Höfle MG; Schloter M; Embacher A; Böhme F; Munch JC; Labrenz M Environ Microbiol; 2007 Mar; 9(3):612-24. PubMed ID: 17298362 [TBL] [Abstract][Full Text] [Related]
6. Archaeal rRNA diversity and methane production in deep boreal peat. Putkinen A; Juottonen H; Juutinen S; Tuittila ES; Fritze H; Yrjälä K FEMS Microbiol Ecol; 2009 Oct; 70(1):87-98. PubMed ID: 19656192 [TBL] [Abstract][Full Text] [Related]
7. Effect of temperature change on the composition of the bacterial and archaeal community potentially involved in the turnover of acetate and propionate in methanogenic rice field soil. Noll M; Klose M; Conrad R FEMS Microbiol Ecol; 2010 Aug; 73(2):215-25. PubMed ID: 20491920 [TBL] [Abstract][Full Text] [Related]
8. Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78 degrees N) as characterized by 16S rRNA gene fingerprinting. Høj L; Olsen RA; Torsvik VL FEMS Microbiol Ecol; 2005 Jun; 53(1):89-101. PubMed ID: 16329932 [TBL] [Abstract][Full Text] [Related]
9. Thermophilic methane production and oxidation in compost. Jäckel U; Thummes K; Kämpfer P FEMS Microbiol Ecol; 2005 Apr; 52(2):175-84. PubMed ID: 16329904 [TBL] [Abstract][Full Text] [Related]
10. Archaeal community dynamics and detection of ammonia-oxidizing archaea during composting of cattle manure using culture-independent DNA analysis. Yamamoto N; Asano R; Yoshii H; Otawa K; Nakai Y Appl Microbiol Biotechnol; 2011 May; 90(4):1501-10. PubMed ID: 21336928 [TBL] [Abstract][Full Text] [Related]
11. Community analysis of methanogenic archaea within a riparian flooding gradient. Kemnitz D; Chin KJ; Bodelier P; Conrad R Environ Microbiol; 2004 May; 6(5):449-61. PubMed ID: 15049918 [TBL] [Abstract][Full Text] [Related]
12. Phenotypic characterization of Rice Cluster III archaea without prior isolation by applying quantitative polymerase chain reaction to an enrichment culture. Kemnitz D; Kolb S; Conrad R Environ Microbiol; 2005 Apr; 7(4):553-65. PubMed ID: 15816932 [TBL] [Abstract][Full Text] [Related]
13. Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat. Høj L; Olsen RA; Torsvik VL ISME J; 2008 Jan; 2(1):37-48. PubMed ID: 18180745 [TBL] [Abstract][Full Text] [Related]
14. Mature fine tailings from oil sands processing harbour diverse methanogenic communities. Penner TJ; Foght JM Can J Microbiol; 2010 Jun; 56(6):459-70. PubMed ID: 20657616 [TBL] [Abstract][Full Text] [Related]
15. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. Chen Y; Wu L; Boden R; Hillebrand A; Kumaresan D; Moussard H; Baciu M; Lu Y; Colin Murrell J ISME J; 2009 Sep; 3(9):1093-104. PubMed ID: 19474813 [TBL] [Abstract][Full Text] [Related]
16. Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Conrad R; Klose M; Noll M Environ Microbiol; 2009 Jul; 11(7):1844-53. PubMed ID: 19508556 [TBL] [Abstract][Full Text] [Related]
17. Quantitative detection of culturable methanogenic archaea abundance in anaerobic treatment systems using the sequence-specific rRNA cleavage method. Narihiro T; Terada T; Ohashi A; Wu JH; Liu WT; Araki N; Kamagata Y; Nakamura K; Sekiguchi Y ISME J; 2009 May; 3(5):522-35. PubMed ID: 19212429 [TBL] [Abstract][Full Text] [Related]
18. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. Ganzert L; Jurgens G; Münster U; Wagner D FEMS Microbiol Ecol; 2007 Feb; 59(2):476-88. PubMed ID: 16978241 [TBL] [Abstract][Full Text] [Related]
19. Depth-related change in archaeal community structure in a freshwater lake sediment as determined with denaturing gradient gel electrophoresis of amplified 16S rRNA genes and reversely transcribed rRNA fragments. Koizumi Y; Takii S; Fukui M FEMS Microbiol Ecol; 2004 May; 48(2):285-92. PubMed ID: 19712411 [TBL] [Abstract][Full Text] [Related]
20. Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California. Goffredi SK; Wilpiszeski R; Lee R; Orphan VJ ISME J; 2008 Feb; 2(2):204-20. PubMed ID: 18219285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]