BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

583 related articles for article (PubMed ID: 17336904)

  • 1. MEF2C transcription factor controls chondrocyte hypertrophy and bone development.
    Arnold MA; Kim Y; Czubryt MP; Phan D; McAnally J; Qi X; Shelton JM; Richardson JA; Bassel-Duby R; Olson EN
    Dev Cell; 2007 Mar; 12(3):377-89. PubMed ID: 17336904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIK3 is essential for chondrocyte hypertrophy during skeletal development in mice.
    Sasagawa S; Takemori H; Uebi T; Ikegami D; Hiramatsu K; Ikegawa S; Yoshikawa H; Tsumaki N
    Development; 2012 Mar; 139(6):1153-63. PubMed ID: 22318228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis.
    Vega RB; Matsuda K; Oh J; Barbosa AC; Yang X; Meadows E; McAnally J; Pomajzl C; Shelton JM; Richardson JA; Karsenty G; Olson EN
    Cell; 2004 Nov; 119(4):555-66. PubMed ID: 15537544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification.
    Hattori T; Müller C; Gebhard S; Bauer E; Pausch F; Schlund B; Bösl MR; Hess A; Surmann-Schmitt C; von der Mark H; de Crombrugghe B; von der Mark K
    Development; 2010 Mar; 137(6):901-11. PubMed ID: 20179096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VEGFA is necessary for chondrocyte survival during bone development.
    Zelzer E; Mamluk R; Ferrara N; Johnson RS; Schipani E; Olsen BR
    Development; 2004 May; 131(9):2161-71. PubMed ID: 15073147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endochondral ossification: how cartilage is converted into bone in the developing skeleton.
    Mackie EJ; Ahmed YA; Tatarczuch L; Chen KS; Mirams M
    Int J Biochem Cell Biol; 2008; 40(1):46-62. PubMed ID: 17659995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bcl-2-associated athanogene-1 (BAG-1): a transcriptional regulator mediating chondrocyte survival and differentiation during endochondral ossification.
    Tare RS; Townsend PA; Packham GK; Inglis S; Oreffo RO
    Bone; 2008 Jan; 42(1):113-28. PubMed ID: 17950682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia.
    Horiki M; Imamura T; Okamoto M; Hayashi M; Murai J; Myoui A; Ochi T; Miyazono K; Yoshikawa H; Tsumaki N
    J Cell Biol; 2004 May; 165(3):433-45. PubMed ID: 15123739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulators of chondrocyte hypertrophy.
    Solomon LA; Bérubé NG; Beier F
    Birth Defects Res C Embryo Today; 2008 Jun; 84(2):123-30. PubMed ID: 18546336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activating transcription factor-2 affects skeletal growth by modulating pRb gene expression.
    Vale-Cruz DS; Ma Q; Syme J; LuValle PA
    Mech Dev; 2008; 125(9-10):843-56. PubMed ID: 18638549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial nitric oxide synthase deficiency in mice results in reduced chondrocyte proliferation and endochondral bone growth.
    Yan Q; Feng Q; Beier F
    Arthritis Rheum; 2010 Jul; 62(7):2013-22. PubMed ID: 20506524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Bone and calcium update; bone research update. Molecular mechanisms regulating chondrocyte differentiation and hypertrophy].
    Tsumaki N
    Clin Calcium; 2011 Dec; 21(12):113-20. PubMed ID: 22133831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HDAC4: a corepressor controlling bone development.
    Hug BA
    Cell; 2004 Nov; 119(4):448-9. PubMed ID: 15537533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the role of Dlx5 in regulation of chondrocyte differentiation during endochondral ossification in the developing mouse limb.
    Chin HJ; Fisher MC; Li Y; Ferrari D; Wang CK; Lichtler AC; Dealy CN; Kosher RA
    Dev Growth Differ; 2007 Aug; 49(6):515-21. PubMed ID: 17555518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fundamental transcription factor for bone and cartilage.
    Komori T
    Biochem Biophys Res Commun; 2000 Oct; 276(3):813-6. PubMed ID: 11027552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypomorphic mutation in mouse Nppc gene causes retarded bone growth due to impaired endochondral ossification.
    Tsuji T; Kondo E; Yasoda A; Inamoto M; Kiyosu C; Nakao K; Kunieda T
    Biochem Biophys Res Commun; 2008 Nov; 376(1):186-90. PubMed ID: 18775416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired endochondral bone development and osteopenia in Gli2-deficient mice.
    Miao D; Liu H; Plut P; Niu M; Huo R; Goltzman D; Henderson JE
    Exp Cell Res; 2004 Mar; 294(1):210-22. PubMed ID: 14980515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage.
    Karamboulas C; Swedani A; Ward C; Al-Madhoun AS; Wilton S; Boisvenue S; Ridgeway AG; Skerjanc IS
    J Cell Sci; 2006 Oct; 119(Pt 20):4305-14. PubMed ID: 17038545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation.
    Haberland M; Arnold MA; McAnally J; Phan D; Kim Y; Olson EN
    Mol Cell Biol; 2007 Jan; 27(2):518-25. PubMed ID: 17101791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming growth factor alpha controls the transition from hypertrophic cartilage to bone during endochondral bone growth.
    Usmani SE; Pest MA; Kim G; Ohora SN; Qin L; Beier F
    Bone; 2012 Jul; 51(1):131-41. PubMed ID: 22575362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.