These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 17337002)
61. Behavior of single DNA molecules in the well-ordered nanopores. Shiu JY; Whang WT; Chen P J Chromatogr A; 2008 Oct; 1206(1):72-6. PubMed ID: 18656884 [TBL] [Abstract][Full Text] [Related]
67. New insights into the transition pathway from nonspecific to specific complex of DNA with Escherichia coli integration host factor. Vivas P; Kuznetsov SV; Ansari A J Phys Chem B; 2008 May; 112(19):5997-6007. PubMed ID: 18461910 [TBL] [Abstract][Full Text] [Related]
68. Variable range hopping and electrical conductivity along the DNA double helix. Yu ZG; Song X Phys Rev Lett; 2001 Jun; 86(26 Pt 1):6018-21. PubMed ID: 11415418 [TBL] [Abstract][Full Text] [Related]
69. Knot-controlled ejection of a polymer from a virus capsid. Matthews R; Louis AA; Yeomans JM Phys Rev Lett; 2009 Feb; 102(8):088101. PubMed ID: 19257792 [TBL] [Abstract][Full Text] [Related]
70. Effects of pulling forces, osmotic pressure, condensing agents and viscosity on the thermodynamics and kinetics of DNA ejection from bacteriophages to bacterial cells: a computational study. Petrov AS; Douglas SS; Harvey SC J Phys Condens Matter; 2013 Mar; 25(11):115101. PubMed ID: 23399864 [TBL] [Abstract][Full Text] [Related]
71. [Influence of chemical analogues of microbial autoregulators on the sensitivity of DNA to UV radiation]. Davydova OK; Deriabin DG; El'-Registan GI Mikrobiologiia; 2006; 75(5):654-61. PubMed ID: 17091588 [TBL] [Abstract][Full Text] [Related]
72. Dynamic light-scattering studies on thermal motions of native DNAs in solution. Soda K; Wada A Biophys Chem; 1984 Oct; 20(3):185-200. PubMed ID: 6238633 [TBL] [Abstract][Full Text] [Related]
73. Controlling the velocity of jumping nanodroplets via their initial shape and temperature. Fuentes-Cabrera M; Rhodes BH; Baskes MI; Terrones H; Fowlkes JD; Simpson ML; Rack PD ACS Nano; 2011 Sep; 5(9):7130-6. PubMed ID: 21800918 [TBL] [Abstract][Full Text] [Related]
74. From bacteriophage lambda to nonlinear dynamics. Thomas R Gene; 1998 Nov; 223(1-2):103-4. PubMed ID: 9858701 [TBL] [Abstract][Full Text] [Related]
75. Temperature-dependent ejection evolution arising from active and passive effects in DNA viruses. Zhang CY; Zhang NH Biophys J; 2024 Oct; 123(19):3317-3330. PubMed ID: 39091028 [TBL] [Abstract][Full Text] [Related]
76. A general theory of polymer ejection tested in a quasi two-dimensional space. Hsiao PY; Chen WY Sci Rep; 2021 Jul; 11(1):14721. PubMed ID: 34282179 [TBL] [Abstract][Full Text] [Related]
77. Scaling Theory of a Polymer Ejecting from a Cavity into a Semi-Space. Hsiao PY Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33339450 [TBL] [Abstract][Full Text] [Related]
78. Late-Arriving Signals Contribute Less to Cell-Fate Decisions. Cortes MG; Trinh JT; Zeng L; Balázsi G Biophys J; 2017 Nov; 113(9):2110-2120. PubMed ID: 29117533 [TBL] [Abstract][Full Text] [Related]
79. Combined Effects of Elevated Cheng K; Van de Waal DB; Niu XY; Zhao YJ Front Microbiol; 2017; 8():1096. PubMed ID: 28659906 [TBL] [Abstract][Full Text] [Related]