BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 17337124)

  • 1. Profiling the culprit in Alzheimer's disease (AD): bacterial toxic proteins - Will they be significant for the aetio-pathogenesis of AD and the transmissible spongiform encephalopathies?
    Schmitt HP
    Med Hypotheses; 2007; 69(3):596-609. PubMed ID: 17337124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein.
    Hooper NM
    Biochem Soc Trans; 2005 Apr; 33(Pt 2):335-8. PubMed ID: 15787600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: membrane-associated misfolded protein propagation in natural transmissible spongiform encephalopathies (TSEs), synthetic prion diseases and Alzheimer's disease.
    Jeffrey M
    Neuropathol Appl Neurobiol; 2013 Apr; 39(3):196-216. PubMed ID: 23171056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting ADAM10 to lipid rafts in neuroblastoma SH-SY5Y cells impairs amyloidogenic processing of the amyloid precursor protein.
    Harris B; Pereira I; Parkin E
    Brain Res; 2009 Nov; 1296():203-15. PubMed ID: 19679113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. epsilon-Glycation, APP and Abeta in ageing and Alzheimer disease: a hypothesis.
    Schmitt HP
    Med Hypotheses; 2006; 66(5):898-906. PubMed ID: 16442744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrillar prion peptide PrP(106-126) treatment induces Dab1 phosphorylation and impairs APP processing and Abeta production in cortical neurons.
    Gavín R; Ureña J; Rangel A; Pastrana MA; Requena JR; Soriano E; Aguzzi A; Del Río JA
    Neurobiol Dis; 2008 May; 30(2):243-54. PubMed ID: 18374587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated silver, barium and strontium in antlers, vegetation and soils sourced from CWD cluster areas: do Ag/Ba/Sr piezoelectric crystals represent the transmissible pathogenic agent in TSEs?
    Purdey M
    Med Hypotheses; 2004; 63(2):211-25. PubMed ID: 15236778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased clusterin (apolipoprotein J) expression in human and mouse brains infected with transmissible spongiform encephalopathies.
    Sasaki K; Doh-ura K; Ironside JW; Iwaki T
    Acta Neuropathol; 2002 Mar; 103(3):199-208. PubMed ID: 11907798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A plausible function of the prion protein: conjectures and a hypothesis.
    Abdulla YH
    Bioessays; 2001 May; 23(5):456-62. PubMed ID: 11340627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuro-modulation, aminergic neuro-disinhibition and neuro-degeneration. Draft of a comprehensive theory for Alzheimer disease.
    Schmitt HP
    Med Hypotheses; 2005; 65(6):1106-19. PubMed ID: 16125326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal microcrystal pollutants: the heat resistant, transmissible nucleating agents that initiate the pathogenesis of TSEs?
    Purdey M
    Med Hypotheses; 2005; 65(3):448-77. PubMed ID: 15908137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of genuine prion infectivity by serial PMCA.
    Weber P; Giese A; Piening N; Mitteregger G; Thomzig A; Beekes M; Kretzschmar HA
    Vet Microbiol; 2007 Aug; 123(4):346-57. PubMed ID: 17493773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clearance of prions during plasma protein manufacture.
    Burdick MD; Pifat DY; Petteway SR; Cai K
    Transfus Med Rev; 2006 Jan; 20(1):57-62. PubMed ID: 16373188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The killing of neurons by beta-amyloid peptides, prions, and pro-inflammatory cytokines.
    Chiarini A; Dal Pra I; Whitfield JF; Armato U
    Ital J Anat Embryol; 2006; 111(4):221-46. PubMed ID: 17385278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into prion strains and neurotoxicity.
    Aguzzi A; Heikenwalder M; Polymenidou M
    Nat Rev Mol Cell Biol; 2007 Jul; 8(7):552-61. PubMed ID: 17585315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible role for Ca2+ in the pathophysiology of the prion protein?
    Peggion C; Bertoli A; Sorgato MC
    Biofactors; 2011; 37(3):241-9. PubMed ID: 21698700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prion diseases of humans and farm animals: epidemiology, genetics, and pathogenesis.
    Aguzzi A
    J Neurochem; 2006 Jun; 97(6):1726-39. PubMed ID: 16805779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiology of the prion protein.
    Linden R; Martins VR; Prado MA; Cammarota M; Izquierdo I; Brentani RR
    Physiol Rev; 2008 Apr; 88(2):673-728. PubMed ID: 18391177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into cellular prion protein (PrPc) functions: the "ying and yang" of a relevant protein.
    Nicolas O; Gavín R; del Río JA
    Brain Res Rev; 2009 Oct; 61(2):170-84. PubMed ID: 19523487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PrP(C) signalling in neurons: from basics to clinical challenges.
    Hirsch TZ; Hernandez-Rapp J; Martin-Lannerée S; Launay JM; Mouillet-Richard S
    Biochimie; 2014 Sep; 104():2-11. PubMed ID: 24952348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.