These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 17337192)
1. A synthetic method for diversification of the P1' substituent in phosphinic dipeptides as a tool for exploration of the specificity of the S1' binding pockets of leucine aminopeptidases. Vassiliou S; Xeilari M; Yiotakis A; Grembecka J; Pawełczak M; Kafarski P; Mucha A Bioorg Med Chem; 2007 May; 15(9):3187-200. PubMed ID: 17337192 [TBL] [Abstract][Full Text] [Related]
2. The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity. Grembecka J; Mucha A; Cierpicki T; Kafarski P J Med Chem; 2003 Jun; 46(13):2641-55. PubMed ID: 12801228 [TBL] [Abstract][Full Text] [Related]
3. Individual stereoisomers of phosphinic dipeptide inhibitor of leucine aminopeptidase. Mucha A; Lämmerhofer M; Lindner W; Pawełczak M; Kafarski P Bioorg Med Chem Lett; 2008 Mar; 18(5):1550-4. PubMed ID: 18262419 [TBL] [Abstract][Full Text] [Related]
4. Identification of phosphinate dipeptide analog inhibitors directed against the Plasmodium falciparum M17 leucine aminopeptidase as lead antimalarial compounds. Skinner-Adams TS; Lowther J; Teuscher F; Stack CM; Grembecka J; Mucha A; Kafarski P; Trenholme KR; Dalton JP; Gardiner DL J Med Chem; 2007 Nov; 50(24):6024-31. PubMed ID: 17960925 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of P1'-diversified phosphinic peptides leads to the development of highly selective inhibitors of MMP-11. Matziari M; Beau F; Cuniasse P; Dive V; Yiotakis A J Med Chem; 2004 Jan; 47(2):325-36. PubMed ID: 14711305 [TBL] [Abstract][Full Text] [Related]
6. alpha-Aminoalkylphosphonates as a tool in experimental optimisation of P1 side chain shape of potential inhibitors in S1 pocket of leucine- and neutral aminopeptidases. Drag M; Grembecka J; Pawełczak M; Kafarski P Eur J Med Chem; 2005 Aug; 40(8):764-71. PubMed ID: 16122579 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of α-carboxyphosphinopeptides derived from norleucine. Pícha J; Buděšínský M; Fiedler P; Sanda M; Jiráček J Amino Acids; 2010 Nov; 39(5):1265-80. PubMed ID: 20349321 [TBL] [Abstract][Full Text] [Related]
8. Substrate recognition and selectivity of peptide deformylase. Similarities and differences with metzincins and thermolysin. Ragusa S; Mouchet P; Lazennec C; Dive V; Meinnel T J Mol Biol; 1999 Jun; 289(5):1445-57. PubMed ID: 10373378 [TBL] [Abstract][Full Text] [Related]
9. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues. Kurth T; Grahn S; Thormann M; Ullmann D; Hofmann HJ; Jakubke HD; Hedstrom L Biochemistry; 1998 Aug; 37(33):11434-40. PubMed ID: 9708978 [TBL] [Abstract][Full Text] [Related]
10. Novel hydroxamic acid-related phosphinates: inhibition of neutral aminopeptidase N (APN). Drag M; Grzywa R; Oleksyszyn J Bioorg Med Chem Lett; 2007 Mar; 17(6):1516-9. PubMed ID: 17270439 [TBL] [Abstract][Full Text] [Related]
11. [Affinity labeling of leucine aminopeptidase with new substrate analog inhibitors]. Fittkau S; Schunck WH; Mootsi S Acta Biol Med Ger; 1976; 35(3-4):365-78. PubMed ID: 970045 [TBL] [Abstract][Full Text] [Related]
12. Design and synthesis of a series of potent and orally bioavailable noncovalent thrombin inhibitors that utilize nonbasic groups in the P1 position. Tucker TJ; Brady SF; Lumma WC; Lewis SD; Gardell SJ; Naylor-Olsen AM; Yan Y; Sisko JT; Stauffer KJ; Lucas BJ; Lynch JJ; Cook JJ; Stranieri MT; Holahan MA; Lyle EA; Baskin EP; Chen IW; Dancheck KB; Krueger JA; Cooper CM; Vacca JP J Med Chem; 1998 Aug; 41(17):3210-9. PubMed ID: 9703466 [TBL] [Abstract][Full Text] [Related]
13. P1' Residue-Oriented Virtual Screening for Potent and Selective Phosphinic (Dehydro) Dipeptide Inhibitors of Metallo-Aminopeptidases. Talma M; Mucha A Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32344658 [TBL] [Abstract][Full Text] [Related]
14. A structural insight into the P1S1 binding mode of diaminoethylphosphonic and phosphinic acids, selective inhibitors of alanine aminopeptidases. Węglarz-Tomczak E; Berlicki Ł; Pawełczak M; Nocek B; Joachimiak A; Mucha A Eur J Med Chem; 2016 Jul; 117():187-96. PubMed ID: 27100031 [TBL] [Abstract][Full Text] [Related]
15. Design, synthesis, and metal binding of novel Pseudo- oligopeptides containing two phosphinic acid groups. Ye Y; Liu M; Kao JL; Marshall GR Biopolymers; 2008 Jan; 89(1):72-85. PubMed ID: 17910046 [TBL] [Abstract][Full Text] [Related]
16. Efficient synthesis of Fmoc-protected phosphinic pseudodipeptides: Building blocks for the synthesis of matrix metalloproteinase inhibitors. Bhowmick M; Sappidi RR; Fields GB; Lepore SD Biopolymers; 2011; 96(1):1-3. PubMed ID: 20225219 [TBL] [Abstract][Full Text] [Related]
17. Development of potent and selective phosphinic peptide inhibitors of angiotensin-converting enzyme 2. Mores A; Matziari M; Beau F; Cuniasse P; Yiotakis A; Dive V J Med Chem; 2008 Apr; 51(7):2216-26. PubMed ID: 18324760 [TBL] [Abstract][Full Text] [Related]
18. Conformational and solvation studies via computer simulation of the novel large scale diastereoselectively synthesized phosphinic MMP inhibitor RXP03 diluted in selected solvents. Matziari M; Dellis D; Dive V; Yiotakis A; Samios J J Phys Chem B; 2010 Jan; 114(1):421-8. PubMed ID: 20014753 [TBL] [Abstract][Full Text] [Related]
19. Structure-guided, single-point modifications in the phosphinic dipeptide structure yield highly potent and selective inhibitors of neutral aminopeptidases. Vassiliou S; Węglarz-Tomczak E; Berlicki Ł; Pawełczak M; Nocek B; Mulligan R; Joachimiak A; Mucha A J Med Chem; 2014 Oct; 57(19):8140-51. PubMed ID: 25192493 [TBL] [Abstract][Full Text] [Related]
20. Janiszewska K; Talma M; Oszywa B; Pawełczak M; Kafarski P; Mucha A Molecules; 2020 Sep; 25(18):. PubMed ID: 32971789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]