These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Brain-derived neurotrophic factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via NMDA receptor-dependent mechanisms. Wu K; Len GW; McAuliffe G; Ma C; Tai JP; Xu F; Black IB Brain Res Mol Brain Res; 2004 Nov; 130(1-2):178-86. PubMed ID: 15519688 [TBL] [Abstract][Full Text] [Related]
3. Brain-derived neurotrophic factor regulates surface expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors by enhancing the N-ethylmaleimide-sensitive factor/GluR2 interaction in developing neocortical neurons. Narisawa-Saito M; Iwakura Y; Kawamura M; Araki K; Kozaki S; Takei N; Nawa H J Biol Chem; 2002 Oct; 277(43):40901-10. PubMed ID: 12130635 [TBL] [Abstract][Full Text] [Related]
4. BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons. Melo CV; Mele M; Curcio M; Comprido D; Silva CG; Duarte CB PLoS One; 2013; 8(1):e53793. PubMed ID: 23326507 [TBL] [Abstract][Full Text] [Related]
5. Acute BDNF treatment upregulates GluR1-SAP97 and GluR2-GRIP1 interactions: implications for sustained AMPA receptor expression. Jourdi H; Kabbaj M PLoS One; 2013; 8(2):e57124. PubMed ID: 23460828 [TBL] [Abstract][Full Text] [Related]
6. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Caldeira MV; Melo CV; Pereira DB; Carvalho RF; Carvalho AL; Duarte CB Mol Cell Neurosci; 2007 Jun; 35(2):208-19. PubMed ID: 17428676 [TBL] [Abstract][Full Text] [Related]
7. Persistent inflammation-induced up-regulation of brain-derived neurotrophic factor (BDNF) promotes synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunits in descending pain modulatory circuits. Tao W; Chen Q; Zhou W; Wang Y; Wang L; Zhang Z J Biol Chem; 2014 Aug; 289(32):22196-204. PubMed ID: 24966334 [TBL] [Abstract][Full Text] [Related]
8. N-methyl-D-aspartate-induced alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor down-regulation involves interaction of the carboxyl terminus of GluR2/3 with Pick1. Ligand-binding studies using Sindbis vectors carrying AMPA receptor decoys. Iwakura Y; Nagano T; Kawamura M; Horikawa H; Ibaraki K; Takei N; Nawa H J Biol Chem; 2001 Oct; 276(43):40025-32. PubMed ID: 11498531 [TBL] [Abstract][Full Text] [Related]
9. AMPA protects cultured neurons against glutamate excitotoxicity through a phosphatidylinositol 3-kinase-dependent activation in extracellular signal-regulated kinase to upregulate BDNF gene expression. Wu X; Zhu D; Jiang X; Okagaki P; Mearow K; Zhu G; McCall S; Banaudha K; Lipsky RH; Marini AM J Neurochem; 2004 Aug; 90(4):807-18. PubMed ID: 15287886 [TBL] [Abstract][Full Text] [Related]
10. Nobiletin, a citrus flavonoid with neurotrophic action, augments protein kinase A-mediated phosphorylation of the AMPA receptor subunit, GluR1, and the postsynaptic receptor response to glutamate in murine hippocampus. Matsuzaki K; Miyazaki K; Sakai S; Yawo H; Nakata N; Moriguchi S; Fukunaga K; Yokosuka A; Sashida Y; Mimaki Y; Yamakuni T; Ohizumi Y Eur J Pharmacol; 2008 Jan; 578(2-3):194-200. PubMed ID: 17976577 [TBL] [Abstract][Full Text] [Related]
11. Benzodiazepine withdrawal-induced glutamatergic plasticity involves up-regulation of GluR1-containing alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in Hippocampal CA1 neurons. Song J; Shen G; Greenfield LJ; Tietz EI J Pharmacol Exp Ther; 2007 Aug; 322(2):569-81. PubMed ID: 17510319 [TBL] [Abstract][Full Text] [Related]
12. Involvement of the secretory pathway for AMPA receptors in NMDA-induced potentiation in hippocampus. Broutman G; Baudry M J Neurosci; 2001 Jan; 21(1):27-34. PubMed ID: 11150316 [TBL] [Abstract][Full Text] [Related]
13. Activity- and Ca(2+)-dependent modulation of surface expression of brain-derived neurotrophic factor receptors in hippocampal neurons. Du J; Feng L; Yang F; Lu B J Cell Biol; 2000 Sep; 150(6):1423-34. PubMed ID: 10995446 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the intracellular transport of GluR1 and GluR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. Perestenko PV; Henley JM J Biol Chem; 2003 Oct; 278(44):43525-32. PubMed ID: 12909632 [TBL] [Abstract][Full Text] [Related]
15. Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Cammarota M; Bernabeu R; Levi De Stein M; Izquierdo I; Medina JH Eur J Neurosci; 1998 Aug; 10(8):2669-76. PubMed ID: 9767396 [TBL] [Abstract][Full Text] [Related]
16. Reduced number of functional glutamatergic synapses in hippocampal neurons overexpressing full-length TrkB receptors. Klau M; Hartmann M; Erdmann KS; Heumann R; Lessmann V J Neurosci Res; 2001 Nov; 66(3):327-36. PubMed ID: 11746350 [TBL] [Abstract][Full Text] [Related]
17. Opiate withdrawal induces dynamic expressions of AMPA receptors and its regulatory molecule CaMKIIalpha in hippocampal synapses. Zhong W; Dong Z; Tian M; Cao J; Xu T; Xu L; Luo J Life Sci; 2006 Jul; 79(9):861-9. PubMed ID: 16616767 [TBL] [Abstract][Full Text] [Related]
18. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses. Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483 [TBL] [Abstract][Full Text] [Related]
19. DCP-LA stimulates AMPA receptor exocytosis through CaMKII activation due to PP-1 inhibition. Kanno T; Yaguchi T; Nagata T; Tanaka A; Nishizaki T J Cell Physiol; 2009 Oct; 221(1):183-8. PubMed ID: 19492412 [TBL] [Abstract][Full Text] [Related]
20. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]