BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 17337546)

  • 1. Analysis of the two-peptide bacteriocins lactococcin G and enterocin 1071 by site-directed mutagenesis.
    Oppegård C; Fimland G; Thorbaek L; Nissen-Meyer J
    Appl Environ Microbiol; 2007 May; 73(9):2931-8. PubMed ID: 17337546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lactococcin G immunity protein recognizes specific regions in both peptides constituting the two-peptide bacteriocin lactococcin G.
    Oppegård C; Emanuelsen L; Thorbek L; Fimland G; Nissen-Meyer J
    Appl Environ Microbiol; 2010 Feb; 76(4):1267-73. PubMed ID: 20038710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of putative helix-helix interacting GxxxG-motifs and tryptophan residues in the two-peptide bacteriocin lactococcin G.
    Oppegård C; Schmidt J; Kristiansen PE; Nissen-Meyer J
    Biochemistry; 2008 May; 47(18):5242-9. PubMed ID: 18407666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure analysis of the two-peptide bacteriocin lactococcin G by introducing D-amino acid residues.
    Oppegård C; Rogne P; Kristiansen PE; Nissen-Meyer J
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1883-1889. PubMed ID: 20203056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the role of charged residues in target-cell binding, potency and specificity of the pediocin-like bacteriocin sakacin P.
    Kazazic M; Nissen-Meyer J; Fimland G
    Microbiology (Reading); 2002 Jul; 148(Pt 7):2019-2027. PubMed ID: 12101290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin lactococcin G.
    Rogne P; Fimland G; Nissen-Meyer J; Kristiansen PE
    Biochim Biophys Acta; 2008 Mar; 1784(3):543-54. PubMed ID: 18187052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action.
    Fimland G; Johnsen L; Dalhus B; Nissen-Meyer J
    J Pept Sci; 2005 Nov; 11(11):688-96. PubMed ID: 16059970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene.
    Holo H; Nilssen O; Nes IF
    J Bacteriol; 1991 Jun; 173(12):3879-87. PubMed ID: 1904860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus.
    Netz DJ; Sahl HG; Marcelino R; dos Santos Nascimento J; de Oliveira SS; Soares MB; do Carmo de Freire Bastos M
    J Mol Biol; 2001 Aug; 311(5):939-49. PubMed ID: 11531330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR structures and mutational analysis of the two peptides constituting the bacteriocin plantaricin S.
    Ekblad B; Kristiansen PE
    Sci Rep; 2019 Feb; 9(1):2333. PubMed ID: 30787405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational effects at the tetramerization site of nonerythroid alpha spectrin.
    Sumandea CA; Fung LW
    Brain Res Mol Brain Res; 2005 May; 136(1-2):81-90. PubMed ID: 15893590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of mesentericin y105, an anti-Listeria bacteriocin, for determination of impact on bactericidal activity, in vitro secondary structure, and membrane interaction.
    Morisset D; Berjeaud JM; Marion D; Lacombe C; Frère J
    Appl Environ Microbiol; 2004 Aug; 70(8):4672-80. PubMed ID: 15294801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TcR recognition of the MHC-peptide dimer: structural properties of a ternary complex.
    Vasmatzis G; Cornette J; Sezerman U; DeLisi C
    J Mol Biol; 1996 Aug; 261(1):72-89. PubMed ID: 8760503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics and identification of enterocins produced by Enterococcus faecium JCM 5804T.
    Park SH; Itoh K; Fujisawa T
    J Appl Microbiol; 2003; 95(2):294-300. PubMed ID: 12859761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products.
    Simova ED; Beshkova DB; Dimitrov ZhP
    J Appl Microbiol; 2009 Feb; 106(2):692-701. PubMed ID: 19200334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactococcin Q, a novel two-peptide bacteriocin produced by Lactococcus lactis QU 4.
    Zendo T; Koga S; Shigeri Y; Nakayama J; Sonomoto K
    Appl Environ Microbiol; 2006 May; 72(5):3383-9. PubMed ID: 16672481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The two-peptide class II bacteriocins: structure, production, and mode of action.
    Oppegård C; Rogne P; Emanuelsen L; Kristiansen PE; Fimland G; Nissen-Meyer J
    J Mol Microbiol Biotechnol; 2007; 13(4):210-9. PubMed ID: 17827971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function of the central domain of streptokinase in substrate plasminogen docking and processing revealed by site-directed mutagenesis.
    Chaudhary A; Vasudha S; Rajagopal K; Komath SS; Garg N; Yadav M; Mande SC; Sahni G
    Protein Sci; 1999 Dec; 8(12):2791-805. PubMed ID: 10631997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide-bacteria interactions using engineered surface-immobilized peptides from class IIa bacteriocins.
    Etayash H; Norman L; Thundat T; Kaur K
    Langmuir; 2013 Mar; 29(12):4048-56. PubMed ID: 23445325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.