BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17337575)

  • 21. Mutations to kirromycin resistance occur in the interface of domains I and III of EF-Tu.GTP.
    Abdulkarim F; Liljas L; Hughes D
    FEBS Lett; 1994 Sep; 352(2):118-22. PubMed ID: 7925958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pulvomycin-resistant mutants of E.coli elongation factor Tu.
    Zeef LA; Bosch L; Anborgh PH; Cetin R; Parmeggiani A; Hilgenfeld R
    EMBO J; 1994 Nov; 13(21):5113-20. PubMed ID: 7957075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The antibiotics kirromycin and pulvomycin bind to different sites on the elongation factor Tu from Escherichia coli.
    Pingoud A; Block W; Urbanke C; Wolf H
    Eur J Biochem; 1982 Apr; 123(2):261-5. PubMed ID: 6122571
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutant ribosomes can generate dominant kirromycin resistance.
    Tubulekas I; Buckingham RH; Hughes D
    J Bacteriol; 1991 Jun; 173(12):3635-43. PubMed ID: 2050625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular properties of two mutant species of the elongation factor Tu.
    Van der Meide PH; Duisterwinkel FJ; De Graaf JM; Kraal B; Bosch L; Douglass J; Blumenthal T
    Eur J Biochem; 1981 Jun; 117(1):1-6. PubMed ID: 7021152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered regulation of the guanosine 5'-triphosphate activity in a kirromycin-resistant elongation factor Tu.
    Fasano O; Parmeggiani A
    Biochemistry; 1981 Mar; 20(5):1361-6. PubMed ID: 6112013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unique antibiotic sensitivity of archaebacterial polypeptide elongation factors.
    Londei P; Sanz JL; Altamura S; Hummel H; Cammarano P; Amils R; Böck A; Wolf H
    J Bacteriol; 1986 Jul; 167(1):265-71. PubMed ID: 3087957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a kirromycin-resistant elongation factor Tu from Escherichia coli.
    Ivell R; Fasano O; Crechet JB; Parmeggiani A
    Biochemistry; 1981 Mar; 20(5):1355-61. PubMed ID: 7013793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elongation factor Tu resistant to kirromycin in an Escherichia coli mutant altered in both tuf genes.
    Fischer E; Wolf H; Hantke K; Parmeggiani A
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4341-5. PubMed ID: 337296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substitution of Arg230 and Arg233 in Escherichia coli elongation factor Tu strongly enhances its pulvomycin resistance.
    Boon K; Krab I; Parmeggiani A; Bosch L; Kraal B
    Eur J Biochem; 1995 Feb; 227(3):816-22. PubMed ID: 7867642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning and sequencing of the tuf genes of Streptomyces coelicolor A3(2).
    van Wezel GP; Woudt LP; Vervenne R; Verdurmen ML; Vijgenboom E; Bosch L
    Biochim Biophys Acta; 1994 Oct; 1219(2):543-7. PubMed ID: 7918656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complete genome sequence of the kirromycin producer Streptomyces collinus Tü 365 consisting of a linear chromosome and two linear plasmids.
    Rückert C; Szczepanowski R; Albersmeier A; Goesmann A; Iftime D; Musiol EM; Blin K; Wohlleben W; Pühler A; Kalinowski J; Weber T
    J Biotechnol; 2013 Dec; 168(4):739-40. PubMed ID: 24140291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Archaebacterial elongation factor Tu insensitive to pulvomycin and kirromycin.
    Cammarano P; Teichner A; Chinali G; Londei P; de Rosa M; Gambacorta A; Nicolaus B
    FEBS Lett; 1982 Nov; 148(2):255-9. PubMed ID: 6759168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping of genes involved in macromolecular synthesis on the chromosome of Streptomyces coelicolor A3(2).
    van Wezel GP; Buttner MJ; Vijgenboom E; Bosch L; Hopwood DA; Kieser HM
    J Bacteriol; 1995 Jan; 177(2):473-6. PubMed ID: 7814340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kirromycin-resistant elongation factor Tu from wild-type of Lactobacillus brevis.
    Wörner W; Wolf H
    FEBS Lett; 1982 Sep; 146(2):322-6. PubMed ID: 6890473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional role of the noncatalytic domains of elongation factor Tu in the interactions with ligands.
    Cetin R; Anborgh PH; Cool RH; Parmeggiani A
    Biochemistry; 1998 Jan; 37(2):486-95. PubMed ID: 9425069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome.
    Tubulekas I; Hughes D
    J Bacteriol; 1993 Jan; 175(1):240-50. PubMed ID: 8416899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Participation of the overproduced elongation factor Tu from Thermus thermophilus in protein biosynthesis of Escherichia coli.
    Zeidler W; Kreutzer R; Sprinzl M
    FEBS Lett; 1993 Mar; 319(1-2):185-8. PubMed ID: 8454054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A kirromycin-resistant EF-Tu species reverses streptomycin dependence of Escherichia coli strains mutated in ribosomal protein S12.
    Zuurmond AM; Zeef LAH; Kraal B
    Microbiology (Reading); 1998 Dec; 144 ( Pt 12)():3309-3316. PubMed ID: 9884222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphorylation of elongation factor Tu prevents ternary complex formation.
    Alexander C; Bilgin N; Lindschau C; Mesters JR; Kraal B; Hilgenfeld R; Erdmann VA; Lippmann C
    J Biol Chem; 1995 Jun; 270(24):14541-7. PubMed ID: 7782317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.