BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1733766)

  • 1. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte.
    Yost MG; Liburdy RP
    FEBS Lett; 1992 Jan; 296(2):117-22. PubMed ID: 1733766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evidence for 60 Hz magnetic fields operating through the signal transduction cascade. Effects on calcium influx and c-MYC mRNA induction.
    Liburdy RP; Callahan DE; Harland J; Dunham E; Sloma TR; Yaswen P
    FEBS Lett; 1993 Nov; 334(3):301-8. PubMed ID: 8243637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsed magnetic field effects on calcium signaling in lymphocytes: dependence on cell status and field intensity.
    Walleczek J; Budinger TF
    FEBS Lett; 1992 Dec; 314(3):351-5. PubMed ID: 1468568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel.
    Liburdy RP
    FEBS Lett; 1992 Apr; 301(1):53-9. PubMed ID: 1333413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A test of the hypothesis that ELF magnetic fields affect calcium uptake in rat thymocytes in vitro.
    Doida Y; Miller MW; Brayman AA; Carstensen EL
    Biochem Biophys Res Commun; 1996 Oct; 227(3):834-8. PubMed ID: 8886018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of weak extremely low frequency magnetic fields on calcium/calmodulin interactions.
    Hendee SP; Faour FA; Christensen DA; Patrick B; Durney CH; Blumenthal DK
    Biophys J; 1996 Jun; 70(6):2915-23. PubMed ID: 8744329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium efflux of plasma membrane vesicles exposed to ELF magnetic fields--test of a nuclear magnetic resonance interaction model.
    Sun WJ; Mogadam MK; Sommarin M; Nittby H; Salford LG; Persson BR; Eberhardt JL
    Bioelectromagnetics; 2012 Oct; 33(7):535-42. PubMed ID: 22487968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological interactions of cellular systems with time-varying magnetic fields.
    Liburdy RP
    Ann N Y Acad Sci; 1992 Mar; 649():74-95. PubMed ID: 1580520
    [No Abstract]   [Full Text] [Related]  

  • 9. [Effects of extremely low frequency weak magnetic fields on the intracellular free calcium concentration in PC-12 tumor cells].
    Huang C; Ye H; Xu J; Liu J; Qu A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Mar; 17(1):63-5, 94. PubMed ID: 10879196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonthermal 60 Hz sinusoidal magnetic-field exposure enhances 45Ca2+ uptake in rat thymocytes: dependence on mitogen activation.
    Walleczek J; Liburdy RP
    FEBS Lett; 1990 Oct; 271(1-2):157-60. PubMed ID: 2226799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium uptake by leukemic and normal T-lymphocytes exposed to low frequency magnetic fields.
    Lyle DB; Wang XH; Ayotte RD; Sheppard AR; Adey WR
    Bioelectromagnetics; 1991; 12(3):145-56. PubMed ID: 1854352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible mechanisms by which extremely low frequency magnetic fields affect opioid function.
    Prato FS; Carson JJ; Ossenkopp KP; Kavaliers M
    FASEB J; 1995 Jun; 9(9):807-14. PubMed ID: 7601344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linearly and circularly polarized, 50 Hz magnetic fields did not alter intracellular calcium in rat immune cells.
    Nishimura I; Yamazaki K; Shigemitsu T; Negishi T; Sasano T
    Ind Health; 1999 Jul; 37(3):289-99. PubMed ID: 10441900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible effect of MR and ELF magnetic fields (0.5 T and 0.5 mT) on human lymphocyte activation patterns.
    Salerno S; La Mendola C; Lo Casto A; Mamone G; Caccamo N; Cardinale AE; Salerno A
    Int J Radiat Biol; 2006 Feb; 82(2):77-85. PubMed ID: 16546906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of Ca2+ influx in rat pituitary cells under exposure to a 50 Hz magnetic field.
    Barbier E; Dufy B; Veyret B
    Bioelectromagnetics; 1996; 17(4):303-11. PubMed ID: 8891189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model for external influences on cellular signal transduction pathways including cytosolic calcium oscillations.
    Eichwald C; Kaiser F
    Bioelectromagnetics; 1995; 16(2):75-85. PubMed ID: 7612029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremely-low-frequency magnetic fields disrupt rhythmic slow activity in rat hippocampal slices.
    Bawin SM; Satmary WM; Jones RA; Adey WR; Zimmerman G
    Bioelectromagnetics; 1996; 17(5):388-95. PubMed ID: 8915548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-dependent effects of ELF magnetic field on chromatin conformation in Escherichia coli cells and human lymphocytes.
    Belyaev IY; Alipov ED
    Biochim Biophys Acta; 2001 Jun; 1526(3):269-76. PubMed ID: 11410336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure to ELF magnetic field tuned to Zn inhibits growth of cancer cells.
    Sarimov R; Markova E; Johansson F; Jenssen D; Belyaev I
    Bioelectromagnetics; 2005 Dec; 26(8):631-8. PubMed ID: 16059916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina.
    Jenrow KA; Smith CH; Liboff AR
    Bioelectromagnetics; 1996; 17(6):467-74. PubMed ID: 8986364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.