BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1733766)

  • 21. Time-varying magnetic fields increase cytosolic free Ca2+ in HL-60 cells.
    Carson JJ; Prato FS; Drost DJ; Diesbourg LD; Dixon SJ
    Am J Physiol; 1990 Oct; 259(4 Pt 1):C687-92. PubMed ID: 2221045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of long-term 50 Hz magnetic field exposure on the micro nucleated polychromatic erythrocyte and blood lymphocyte frequency and argyrophilic nucleolar organizer regions in lymphocytes of mice.
    Okudan N; Celik I; Salbacak A; Cicekcibasi AE; Buyukmumcu M; Gökbel H
    Neuro Endocrinol Lett; 2010; 31(2):208-14. PubMed ID: 20424591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-intensity magnetic fields alter operant behavior in rats.
    Thomas JR; Schrot J; Liboff AR
    Bioelectromagnetics; 1986; 7(4):349-57. PubMed ID: 3801058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of extremely low frequency electric and magnetic fields with humans.
    Tenforde TS; Kaune WT
    Health Phys; 1987 Dec; 53(6):585-606. PubMed ID: 3679823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular calcium signaling by Jurkat T-lymphocytes exposed to a 60 Hz magnetic field.
    Lyle DB; Fuchs TA; Casamento JP; Davis CC; Swicord ML
    Bioelectromagnetics; 1997; 18(6):439-45. PubMed ID: 9261541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of biological changes of continuous whole body exposure to static magnetic field and extremely low frequency electromagnetic fields in mice.
    Hashish AH; El-Missiry MA; Abdelkader HI; Abou-Saleh RH
    Ecotoxicol Environ Saf; 2008 Nov; 71(3):895-902. PubMed ID: 17996303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional modulation of activated lymphocytes by time-varying magnetic fields.
    Murabayashi S; Yoshikawa A; Mitamura Y
    Ther Apher Dial; 2004 Jun; 8(3):206-11. PubMed ID: 15154872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavioural evidence that magnetic field effects in the land snail, Cepaea nemoralis, might not depend on magnetite or induced electric currents.
    Prato FS; Kavaliers M; Carson JJ
    Bioelectromagnetics; 1996; 17(2):123-30. PubMed ID: 8860729
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic field inhibits isolated lymphocytes' proliferative response to mitogen stimulation.
    Roman A; Zyss T; Nalepa I
    Bioelectromagnetics; 2005 Apr; 26(3):201-6. PubMed ID: 15768428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Weak extremely-low-frequency magnetic fields and regeneration in the planarian Dugesia tigrina.
    Jenrow KA; Smith CH; Liboff AR
    Bioelectromagnetics; 1995; 16(2):106-12. PubMed ID: 7612025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behavioral sensitivity of rats to extremely-low-frequency magnetic fields.
    Smith RF; Clarke RL; Justesen DR
    Bioelectromagnetics; 1994; 15(5):411-26. PubMed ID: 7802709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect on rat thymocytes of the simultaneous in vivo exposure to 50-Hz electric and magnetic field and to continuous light.
    Quaglino D; Capri M; Zecca L; Franceschi C; Ronchetti IP
    ScientificWorldJournal; 2004 Oct; 4 Suppl 2():91-9. PubMed ID: 15517107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytogenetic effects of 50 Hz magnetic fields of different magnetic flux densities.
    Maes A; Collier M; Vandoninck S; Scarpa P; Verschaeve L
    Bioelectromagnetics; 2000 Dec; 21(8):589-96. PubMed ID: 11102949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism for combined action of microwaves and static magnetic field: slow non uniform rotation of charged nucleoid.
    Matronchik AY; Belyaev IY
    Electromagn Biol Med; 2008; 27(4):340-54. PubMed ID: 19037783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biological effects of 6 mT static magnetic fields: a comparative study in different cell types.
    Tenuzzo B; Chionna A; Panzarini E; Lanubile R; Tarantino P; Di Jeso B; Dwikat M; Dini L
    Bioelectromagnetics; 2006 Oct; 27(7):560-77. PubMed ID: 16724329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-time measurement of cytosolic free calcium concentration in Jurkat cells during ELF magnetic field exposure and evaluation of the role of cell cycle.
    McCreary CR; Dixon SJ; Fraher LJ; Carson JJ; Prato FS
    Bioelectromagnetics; 2006 Jul; 27(5):354-64. PubMed ID: 16715520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential modulation of natural and adaptive immunity in Fischer rats exposed for 6 weeks to 60 Hz linear sinusoidal continuous-wave magnetic fields.
    Tremblay L; Houde M; Mercier G; Gagnon J; Mandeville R
    Bioelectromagnetics; 1996; 17(5):373-83. PubMed ID: 8915546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental determination of hydrogen bandwidth for the ion parametric resonance model.
    Blackman CF; Blanchard JP; Benane SG; House DE
    Bioelectromagnetics; 1999; 20(1):5-12. PubMed ID: 9915588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of static magnetic fields at the cellular level.
    Miyakoshi J
    Prog Biophys Mol Biol; 2005; 87(2-3):213-23. PubMed ID: 15556660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for direct effect of magnetic fields on neurite outgrowth.
    Blackman CF; Benane SG; House DE
    FASEB J; 1993 Jun; 7(9):801-6. PubMed ID: 8330687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.