These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 1733775)
1. Alteration of the proximal bond energy in the unliganded form of the homodimeric myoglobin from Nassa mutabilis. Kinetic and spectroscopic evidence. Coletta M; Ascenzi P; Smulevich G; Mantini AR; Del Gaudio R; Piscopo M; Geraci G FEBS Lett; 1992 Jan; 296(2):184-6. PubMed ID: 1733775 [TBL] [Abstract][Full Text] [Related]
2. Resonance Raman studies of the heme active site of the homodimeric myoglobin from Nassa mutabilis: a peculiar case. Smulevich G; Mantini AR; Paoli M; Coletta M; Geraci G Biochemistry; 1995 Jun; 34(22):7507-16. PubMed ID: 7779795 [TBL] [Abstract][Full Text] [Related]
3. A novel mechanism of heme-heme interaction in the homodimeric hemoglobin from Scapharca inaequivalvis as manifested upon cleavage of the proximal Fe-N epsilon bond at low pH. Coletta M; Boffi A; Ascenzi P; Brunori M; Chiancone E J Biol Chem; 1990 Mar; 265(9):4828-30. PubMed ID: 2318864 [TBL] [Abstract][Full Text] [Related]
4. Cooperative mechanism in the homodimeric myoglobin from Nassa mutabilis. Coletta M; Ascenzi P; Polizio F; Smulevich G; del Gaudio R; Piscopo M; Geraci G Biochemistry; 1998 Mar; 37(9):2873-8. PubMed ID: 9485438 [TBL] [Abstract][Full Text] [Related]
5. Kinetic evidence for a role of heme geometry on the modulation of carbon monoxide reactivity in human hemoglobin. Coletta M; Ascenzi P; Brunori M J Biol Chem; 1988 Dec; 263(34):18286-9. PubMed ID: 3192534 [TBL] [Abstract][Full Text] [Related]
6. Modulation of protein function by exogenous ligands in protein cavities: CO binding to a myoglobin cavity mutant containing unnatural proximal ligands. Decatur SM; DePillis GD; Boxer SG Biochemistry; 1996 Apr; 35(13):3925-32. PubMed ID: 8672423 [TBL] [Abstract][Full Text] [Related]
7. Inversion of axial coordination in myoglobin to create a "proximal" ligand binding pocket. Uno T; Sakamoto R; Tomisugi Y; Ishikawa Y; Wilkinson AJ Biochemistry; 2003 Sep; 42(34):10191-9. PubMed ID: 12939147 [TBL] [Abstract][Full Text] [Related]
8. Geminate carbon monoxide rebinding to a c-type haem. Silkstone G; Jasaitis A; Vos MH; Wilson MT Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930 [TBL] [Abstract][Full Text] [Related]
9. Proximal and distal effects on the coordination chemistry of ferric Scapharca homodimeric hemoglobin as revealed by heme pocket mutants. Boffi A; Guarrera L; Giangiacomo L; Spagnuolo C; Chiancone E Biochemistry; 2000 Mar; 39(12):3500-4. PubMed ID: 10727246 [TBL] [Abstract][Full Text] [Related]
10. Structural and dynamic properties of the homodimeric hemoglobin from Scapharca inaequivalvis Thr-72-->Ile mutant: molecular dynamics simulation, low temperature visible absorption spectroscopy, and resonance Raman spectroscopy studies. Falconi M; Desideri A; Cupane A; Leone M; Ciccotti G; Peterson ES; Friedman JM; Gambacurta A; Ascoli F Biophys J; 1998 Nov; 75(5):2489-503. PubMed ID: 9788944 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic study of Ser92 mutants of human myoglobin: hydrogen bonding effect of Ser92 to proximal His93 on structure and property of myoglobin. Shiro Y; Iizuka T; Marubayashi K; Ogura T; Kitagawa T; Balasubramanian S; Boxer SG Biochemistry; 1994 Dec; 33(50):14986-92. PubMed ID: 7999755 [TBL] [Abstract][Full Text] [Related]
12. Investigations of optical line shapes and kinetic hole burning in myoglobin. Srajer V; Champion PM Biochemistry; 1991 Jul; 30(30):7390-402. PubMed ID: 1854744 [TBL] [Abstract][Full Text] [Related]
13. Reactivity of ferrous heme proteins at low pH. Traylor TG; Deardurff LA; Coletta M; Ascenzi P; Antonini E; Brunori M J Biol Chem; 1983 Oct; 258(20):12147-8. PubMed ID: 6630184 [TBL] [Abstract][Full Text] [Related]
14. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode. Gilch H; Schweitzer-Stenner R; Dreybrodt W Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of carbon monoxide binding to monomeric hemoproteins. Role of the proximal histidine. Coletta M; Ascenzi P; Traylor TG; Brunori M J Biol Chem; 1985 Apr; 260(7):4151-5. PubMed ID: 3980472 [TBL] [Abstract][Full Text] [Related]
16. Synergistic Effect of Distal Polar Interactions in Myoglobin and Their Structural Consequences. Watanabe M; Kanai Y; Nakamura S; Nishimura R; Shibata T; Momotake A; Yanagisawa S; Ogura T; Matsuo T; Hirota S; Neya S; Suzuki A; Yamamoto Y Inorg Chem; 2018 Nov; 57(22):14269-14279. PubMed ID: 30387349 [TBL] [Abstract][Full Text] [Related]
17. Substitution of the heme binding module in hemoglobin alpha- and beta-subunits. Implication for different regulation mechanisms of the heme proximal structure between hemoglobin and myoglobin. Inaba K; Ishimori K; Imai K; Morishima I J Biol Chem; 2000 Apr; 275(17):12438-45. PubMed ID: 10777528 [TBL] [Abstract][Full Text] [Related]
18. Metastable intermediates in myoglobin at low pH. Han S; Rousseau DL; Giacometti G; Brunori M Proc Natl Acad Sci U S A; 1990 Jan; 87(1):205-9. PubMed ID: 2296580 [TBL] [Abstract][Full Text] [Related]
19. Proximal and distal influences on ligand binding kinetics in microperoxidase and heme model compounds. Cao W; Ye X; Georgiev GY; Berezhna S; Sjodin T; Demidov AA; Wang W; Sage JT; Champion PM Biochemistry; 2004 Jun; 43(22):7017-27. PubMed ID: 15170339 [TBL] [Abstract][Full Text] [Related]
20. Investigations of photolysis and rebinding kinetics in myoglobin using proximal ligand replacements. Cao W; Ye X; Sjodin T; Christian JF; Demidov AA; Berezhna S; Wang W; Barrick D; Sage JT; Champion PM Biochemistry; 2004 Aug; 43(34):11109-17. PubMed ID: 15323570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]