These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17338230)

  • 1. [Reassortment and gene interactions in the crossing of low-pathogenic avian influenza H5 virus with human influenza virus].
    Kochergin-Nikitskiĭ KS; Rudneva IA; Timofeeva TA; Il'iushina NA; Varich NL; Vlasova AN; Kaverin NV; L'vov DK
    Vopr Virusol; 2007; 52(1):23-8. PubMed ID: 17338230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of gene constellation and postreassortment amino acid change on the phenotypic features of H5 influenza virus reassortants.
    Rudneva IA; Timofeeva TA; Shilov AA; Kochergin-Nikitsky KS; Varich NL; Ilyushina NA; Gambaryan AS; Krylov PS; Kaverin NV
    Arch Virol; 2007; 152(6):1139-45. PubMed ID: 17294090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-reassortment amino acid change in the hemagglutinin of a human-avian influenza H5N1 reassortant virus alters its antigenic specificity.
    Rudneva IA; Timofeeva TA; Ilyushina NA; Varich NL; Kochergin-Nikitsky KS; Kaverin NV
    Acta Virol; 2008; 52(3):181-4. PubMed ID: 18999893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Optimization of the gene composition of influenza H5 virus hemagglutinin-containing reassortants and their efficacy in immune cross-protection experiments].
    Rudneva IA; Kaverin NV; Timofeeva TA; Shilov AA; Varich NL; Kochergin-Nikitskiĭ KS; Krylov PS; L'vov DK
    Vopr Virusol; 2008; 53(1):24-7. PubMed ID: 18318131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reassortment and modification of hemagglutinin cleavage motif of avian/WSN influenza viruses generated by reverse genetics that correlate with attenuation.
    Lu JH; Long JX; Jia LJ; Liu YL; Shao WX; Zhang YM; Liu XF
    Acta Virol; 2006; 50(4):243-9. PubMed ID: 17177609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased pathogenicity of a reassortant 2009 pandemic H1N1 influenza virus containing an H5N1 hemagglutinin.
    Cline TD; Karlsson EA; Freiden P; Seufzer BJ; Rehg JE; Webby RJ; Schultz-Cherry S
    J Virol; 2011 Dec; 85(23):12262-70. PubMed ID: 21917948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The inoculative properties of cold-adapted reassortant A(H5N2) influenza strain during intranasal administration to mice].
    Desheva IuA; Lu Kh; Rekstin AR; Kats DM; Rudenko LG; Klimov AI
    Vopr Virusol; 2007; 52(4):27-30. PubMed ID: 17722607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive mutations in PB2 gene contribute to the high virulence of a natural reassortant H5N2 avian influenza virus in mice.
    Li Q; Wang X; Sun Z; Hu J; Gao Z; Hao X; Li J; Liu H; Wang X; Gu M; Xu X; Liu X; Liu X
    Virus Res; 2015 Dec; 210():255-63. PubMed ID: 26315686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet.
    Zhang Y; Zhang Q; Kong H; Jiang Y; Gao Y; Deng G; Shi J; Tian G; Liu L; Liu J; Guan Y; Bu Z; Chen H
    Science; 2013 Jun; 340(6139):1459-63. PubMed ID: 23641061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of an attenuated H5N1 avian influenza virus vaccine with all eight genes from avian viruses.
    Shi H; Liu XF; Zhang X; Chen S; Sun L; Lu J
    Vaccine; 2007 Oct; 25(42):7379-84. PubMed ID: 17870216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replication and pathogenesis associated with H5N1, H5N2, and H5N3 low-pathogenic avian influenza virus infection in chickens and ducks.
    Mundt E; Gay L; Jones L; Saavedra G; Tompkins SM; Tripp RA
    Arch Virol; 2009; 154(8):1241-8. PubMed ID: 19575275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of avian influenza A viruses isolated from domestic waterfowl in live-bird markets of Hanoi, Vietnam, preceding fatal H5N1 human infections in 2004.
    Jadhao SJ; Nguyen DC; Uyeki TM; Shaw M; Maines T; Rowe T; Smith C; Huynh LP; Nghiem HK; Nguyen DH; Nguyen HK; Nguyen HH; Hoang LT; Nguyen T; Phuong LS; Klimov A; Tumpey TM; Cox NJ; Donis RO; Matsuoka Y; Katz JM
    Arch Virol; 2009; 154(8):1249-61. PubMed ID: 19578928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Vero-cell-adapted vaccine donor strain of influenza A virus generated by serial passages.
    Hu W; Zhang H; Han Q; Li L; Chen Y; Xia N; Chen Z; Shu Y; Xu K; Sun B
    Vaccine; 2015 Jan; 33(2):374-81. PubMed ID: 25448099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Engineering by reverse genetics and characterization of the new reassortant influenza virus strain H5N1].
    Zeberezhnyĭ AD; Grebennikova TV; Vorkunova GK; Yuzhakov AG; Kostina LV; Norkina SN; Aliper TI; Nepoklonov EA; Lvov DK
    Vopr Virusol; 2014; 59(6):23-7. PubMed ID: 25929032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [High-yield reassortant virus containing hemagglutinin and neuraminidase genes of pandemic influenza A/Moscowl/01/2009 (H1N1) virus].
    Ignat'eva AV; Rudneva IA; Timofeeva TA; Shilov AA; Zaberezhnyĭ AD; Aliper TI; Kaverin NV; L'vov DK
    Vopr Virusol; 2011; 56(4):9-14. PubMed ID: 21899062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The NS segment of an H5N1 highly pathogenic avian influenza virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV.
    Ma W; Brenner D; Wang Z; Dauber B; Ehrhardt C; Högner K; Herold S; Ludwig S; Wolff T; Yu K; Richt JA; Planz O; Pleschka S
    J Virol; 2010 Feb; 84(4):2122-33. PubMed ID: 20007264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses.
    Chen LM; Davis CT; Zhou H; Cox NJ; Donis RO
    PLoS Pathog; 2008 May; 4(5):e1000072. PubMed ID: 18497857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serial passage in ducks of a low-pathogenic avian influenza virus isolated from a chicken reveals a high mutation rate in the hemagglutinin that is likely due to selection in the host.
    Ridenour C; Williams SM; Jones L; Tompkins SM; Tripp RA; Mundt E
    Arch Virol; 2015 Oct; 160(10):2455-70. PubMed ID: 26179620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of the H5N1 influenza virus vaccine strain to decrease the pathogenicity in chicken embryos.
    Isoda N; Sakoda Y; Okamatsu M; Tsuda Y; Kida H
    Arch Virol; 2011 Apr; 156(4):557-63. PubMed ID: 21203786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of vaccine strains of H5 and H7 influenza viruses.
    Soda K; Sakoda Y; Isoda N; Kajihara M; Haraguchi Y; Shibuya H; Yoshida H; Sasaki T; Sakamoto R; Saijo K; Hagiwara J; Kida H
    Jpn J Vet Res; 2008 Jan; 55(2-3):93-8. PubMed ID: 18318111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.