BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17338306)

  • 1. Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering.
    Kawaguchi M; Fukushima T; Hayakawa T; Nakashima N; Inoue Y; Takeda S; Okamura K; Taniguchi K
    Dent Mater J; 2006 Dec; 25(4):719-25. PubMed ID: 17338306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiwalled Carbon Nanotube-Chitosan Scaffold: Cytotoxic, Apoptoti c, and Necrotic Effects on Chondrocyte Cell Lines.
    Ilbasmis-Tamer S; Ciftci H; Turk M; Degim T; Tamer U
    Curr Pharm Biotechnol; 2017; 18(4):327-335. PubMed ID: 28137220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and detection of a novel hybrid conductive scaffold based on alginate/gelatin/carboxylated carbon nanotubes (Alg/Gel/mMWCNTs) for neural tissue engineering.
    Ma H; Yu K; Wang H; Liu J; Cheng YY; Kang Y; Wang H; Zhang J; Song K
    Tissue Cell; 2023 Feb; 80():101995. PubMed ID: 36512950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Two-Step Method for Transferring Single-Walled Carbon Nanotubes onto a Hydrogel Substrate.
    Imaninezhad M; Kuljanishvili I; Zustiak SP
    Macromol Biosci; 2017 Mar; 17(3):. PubMed ID: 27701819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of injectable 3D-formed beta-tricalcium phosphate bead/alginate composite for bone tissue engineering.
    Matsuno T; Hashimoto Y; Adachi S; Omata K; Yoshitaka Y; Ozeki Y; Umezu Y; Tabata Y; Nakamura M; Satoh T
    Dent Mater J; 2008 Nov; 27(6):827-34. PubMed ID: 19241692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in situ hydrogel-forming scaffold loaded by PLGA microspheres containing carbon nanotube as a suitable niche for neural differentiation.
    Shafiee A; Kehtari M; Zarei Z; Soleimani M; Varshochian R; Ahmadi A; Atyabi F; Dinarvand R
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111739. PubMed ID: 33545882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorine-ion-releasing injectable alginate nanocomposite hydrogel for enhanced bioactivity and antibacterial property.
    Shin DY; Cheon KH; Song EH; Seong YJ; Park JU; Kim HE; Jeong SH
    Int J Biol Macromol; 2019 Feb; 123():866-877. PubMed ID: 30447366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications.
    Baniasadi H; Mashayekhan S; Fadaoddini S; Haghirsharifzamini Y
    J Biomater Appl; 2016 Jul; 31(1):152-61. PubMed ID: 26916948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering.
    Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME
    Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering.
    Yan J; Miao Y; Tan H; Zhou T; Ling Z; Chen Y; Xing X; Hu X
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():274-84. PubMed ID: 27040220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotube-doped alginate gel as a novel carrier for BSA immobilization.
    Jiang Z; Xu S; Lu Y; Yuan W; Wu H; Lv C
    J Biomater Sci Polym Ed; 2006; 17(1-2):21-35. PubMed ID: 16411596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting.
    Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ
    J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of MSC properties in two different hydrogels. Impact of mechanical properties.
    Yu H; Cauchois G; Louvet N; Chen Y; Rahouadj R; Huselstein C
    Biomed Mater Eng; 2017; 28(s1):S193-S200. PubMed ID: 28372295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan-alginate hybrid scaffolds for bone tissue engineering.
    Li Z; Ramay HR; Hauch KD; Xiao D; Zhang M
    Biomaterials; 2005 Jun; 26(18):3919-28. PubMed ID: 15626439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The improvement of periodontal tissue regeneration using a 3D-printed carbon nanotube/chitosan/sodium alginate composite scaffold.
    Suo L; Wu H; Wang P; Xue Z; Gao J; Shen J
    J Biomed Mater Res B Appl Biomater; 2023 Jan; 111(1):73-84. PubMed ID: 35841326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a new carbon nanotube-alginate-hydroxyapatite tricomponent composite scaffold for application in bone tissue engineering.
    Rajesh R; Ravichandran YD
    Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):7-15. PubMed ID: 26491303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alginate/Poly(γ-glutamic Acid) Base Biocompatible Gel for Bone Tissue Engineering.
    Chan WP; Kung FC; Kuo YL; Yang MC; Lai WF
    Biomed Res Int; 2015; 2015():185841. PubMed ID: 26504784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds.
    Balakrishnan B; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels.
    Han Y; Zeng Q; Li H; Chang J
    Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.