These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 17338503)

  • 1. Using a multijunction microfluidic device to inject substrate into an array of preformed plugs without cross-contamination: comparing theory and experiments.
    Li L; Boedicker JQ; Ismagilov RF
    Anal Chem; 2007 Apr; 79(7):2756-61. PubMed ID: 17338503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.
    Adamson DN; Mustafi D; Zhang JX; Zheng B; Ismagilov RF
    Lab Chip; 2006 Sep; 6(9):1178-86. PubMed ID: 16929397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system.
    Song H; Li HW; Munson MS; Van Ha TG; Ismagilov RF
    Anal Chem; 2006 Jul; 78(14):4839-49. PubMed ID: 16841902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microprocessing of liquid plugs for bio/chemical analyses.
    Sassa F; Fukuda J; Suzuki H
    Anal Chem; 2008 Aug; 80(16):6206-13. PubMed ID: 18627178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sampling from nanoliter plugs via asymmetrical splitting of segmented flow.
    Nie J; Kennedy RT
    Anal Chem; 2010 Sep; 82(18):7852-6. PubMed ID: 20738106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins.
    Li L; Mustafi D; Fu Q; Tereshko V; Chen DL; Tice JD; Ismagilov RF
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19243-8. PubMed ID: 17159147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants.
    Roach LS; Song H; Ismagilov RF
    Anal Chem; 2005 Feb; 77(3):785-96. PubMed ID: 15679345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic platform for on-demand generation of spatially indexed combinatorial droplets.
    Zec H; Rane TD; Wang TH
    Lab Chip; 2012 Sep; 12(17):3055-62. PubMed ID: 22810353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aptamer-based thrombin assay on microfluidic platform.
    Chen FY; Wang Z; Li P; Lian HZ; Chen HY
    Electrophoresis; 2013 Dec; 34(24):3260-6. PubMed ID: 24127412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device.
    VanDelinder V; Groisman A
    Anal Chem; 2006 Jun; 78(11):3765-71. PubMed ID: 16737235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sampling and electrophoretic analysis of segmented flow streams using virtual walls in a microfluidic device.
    Roman GT; Wang M; Shultz KN; Jennings C; Kennedy RT
    Anal Chem; 2008 Nov; 80(21):8231-8. PubMed ID: 18831564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of chemical concentration gradients in mobile droplet arrays via fragmentation of long immiscible diluting plugs.
    Sun M; Vanapalli SA
    Anal Chem; 2013 Feb; 85(4):2044-8. PubMed ID: 23305181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a microfluidic device for 1 microl DNA microarray hybridization in 500 s.
    Wei CW; Cheng JY; Huang CT; Yen MH; Young TH
    Nucleic Acids Res; 2005 May; 33(8):e78. PubMed ID: 15891111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A power-free, parallel loading microfluidic reactor array for biochemical screening.
    Liu Y; Li G
    Sci Rep; 2018 Sep; 8(1):13664. PubMed ID: 30209328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A serial sample loading system: interfacing multiwell plates with microfluidic devices.
    Rane TD; Zec HC; Wang TH
    J Lab Autom; 2012 Oct; 17(5):370-7. PubMed ID: 22885789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collection of nanoliter microdialysate fractions in plugs for off-line in vivo chemical monitoring with up to 2 s temporal resolution.
    Wang M; Slaney T; Mabrouk O; Kennedy RT
    J Neurosci Methods; 2010 Jun; 190(1):39-48. PubMed ID: 20447417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous generation of multiple aqueous droplets in a microfluidic device.
    Lorenz RM; Fiorini GS; Jeffries GD; Lim DS; He M; Chiu DT
    Anal Chim Acta; 2008 Dec; 630(2):124-30. PubMed ID: 19012823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement.
    Liu W; Kim HJ; Lucchetta EM; Du W; Ismagilov RF
    Lab Chip; 2009 Aug; 9(15):2153-62. PubMed ID: 19606291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using three-phase flow of immiscible liquids to prevent coalescence of droplets in microfluidic channels: criteria to identify the third liquid and validation with protein crystallization.
    Chen DL; Li L; Reyes S; Adamson DN; Ismagilov RF
    Langmuir; 2007 Feb; 23(4):2255-60. PubMed ID: 17279722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.