BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17338509)

  • 1. One- to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties.
    Azencott CA; Ksikes A; Swamidass SJ; Chen JH; Ralaivola L; Baldi P
    J Chem Inf Model; 2007; 47(3):965-74. PubMed ID: 17338509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules.
    Lusci A; Pollastri G; Baldi P
    J Chem Inf Model; 2013 Jul; 53(7):1563-75. PubMed ID: 23795551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual screening with support vector machines and structure kernels.
    Mahé P; Vert JP
    Comb Chem High Throughput Screen; 2009 May; 12(4):409-23. PubMed ID: 19442068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity.
    Swamidass SJ; Chen J; Bruand J; Phung P; Ralaivola L; Baldi P
    Bioinformatics; 2005 Jun; 21 Suppl 1():i359-68. PubMed ID: 15961479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph kernels for chemical informatics.
    Ralaivola L; Swamidass SJ; Saigo H; Baldi P
    Neural Netw; 2005 Oct; 18(8):1093-110. PubMed ID: 16157471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Melting Points of Organic Molecules: Applications to Aqueous Solubility Prediction Using the General Solubility Equation.
    McDonagh JL; van Mourik T; Mitchell JB
    Mol Inform; 2015 Nov; 34(11-12):715-24. PubMed ID: 27491032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of aqueous solubility from SCRATCH.
    Jain P; Yalkowsky SH
    Int J Pharm; 2010 Jan; 385(1-2):1-5. PubMed ID: 19819319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P.
    Hughes LD; Palmer DS; Nigsch F; Mitchell JB
    J Chem Inf Model; 2008 Jan; 48(1):220-32. PubMed ID: 18186622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comments on prediction of the aqueous solubility using the general solubility equation (GSE) versus a genetic algorithm and a support vector machine model.
    Alantary D; Yalkowsky S
    Pharm Dev Technol; 2018 Sep; 23(7):739-740. PubMed ID: 28425310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scores of extended connectivity fingerprint as descriptors in QSPR study of melting point and aqueous solubility.
    Zhou D; Alelyunas Y; Liu R
    J Chem Inf Model; 2008 May; 48(5):981-7. PubMed ID: 18465850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADME evaluation in drug discovery. 3. Modeling blood-brain barrier partitioning using simple molecular descriptors.
    Hou TJ; Xu XJ
    J Chem Inf Comput Sci; 2003; 43(6):2137-52. PubMed ID: 14632466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction.
    Coley CW; Barzilay R; Green WH; Jaakkola TS; Jensen KF
    J Chem Inf Model; 2017 Aug; 57(8):1757-1772. PubMed ID: 28696688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pharmacophore kernel for virtual screening with support vector machines.
    Mahé P; Ralaivola L; Stoven V; Vert JP
    J Chem Inf Model; 2006; 46(5):2003-14. PubMed ID: 16995731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships.
    Cheng A; Merz KM
    J Med Chem; 2003 Aug; 46(17):3572-80. PubMed ID: 12904062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atom pair 2D-fingerprints perceive 3D-molecular shape and pharmacophores for very fast virtual screening of ZINC and GDB-17.
    Awale M; Reymond JL
    J Chem Inf Model; 2014 Jul; 54(7):1892-907. PubMed ID: 24988038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of partition coefficient based on atom-type electrotopological state indices.
    Huuskonen JJ; Villa AE; Tetko IV
    J Pharm Sci; 1999 Feb; 88(2):229-33. PubMed ID: 9950643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning.
    Zang Q; Mansouri K; Williams AJ; Judson RS; Allen DG; Casey WM; Kleinstreuer NC
    J Chem Inf Model; 2017 Jan; 57(1):36-49. PubMed ID: 28006899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TopP-S: Persistent homology-based multi-task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility.
    Wu K; Zhao Z; Wang R; Wei GW
    J Comput Chem; 2018 Jul; 39(20):1444-1454. PubMed ID: 29633287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of small molecules by two- and three-dimensional decomposition kernels.
    Ceroni A; Costa F; Frasconi P
    Bioinformatics; 2007 Aug; 23(16):2038-45. PubMed ID: 17550912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction.
    Öztürk H; Ozkirimli E; Özgür A
    BMC Bioinformatics; 2016 Mar; 17():128. PubMed ID: 26987649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.