These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 17338520)

  • 41. Does the surface matter? Hydrogen-bonded chain formation of an oxalic amide derivative in a two- and three-dimensional environment.
    Klappenberger F; Cañas-Ventura ME; Clair S; Pons S; Schlickum U; Qu ZR; Strunskus T; Comisso A; Wöll C; Brune H; Kern K; De Vita A; Ruben M; Barth JV
    Chemphyschem; 2008 Dec; 9(17):2522-30. PubMed ID: 18991309
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction for the separation efficiency of a pair of enantiomers during chiral high-performance liquid chromatography using a quartz crystal microbalance.
    Inagaki S; Min JZ; Toyo'oka T
    Anal Chem; 2008 Mar; 80(5):1824-8. PubMed ID: 18215020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Racemic beta-sheets as templates of relevance to the origin of homochirality of peptides: lessons from crystal chemistry.
    Weissbuch I; Illos RA; Bolbach G; Lahav M
    Acc Chem Res; 2009 Aug; 42(8):1128-40. PubMed ID: 19480407
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fast comprehensive two-dimensional gas chromatography with cryogenic modulation.
    Junge M; Bieri S; Huegel H; Marriott PJ
    Anal Chem; 2007 Jun; 79(12):4448-54. PubMed ID: 17500532
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chiral symmetry breaking and polymorphism in 1,1'-binaphthyl melt crystallization.
    Sainz-Díaz CI; Martín-Islan AP; Cartwright JH
    J Phys Chem B; 2005 Oct; 109(40):18758-64. PubMed ID: 16853413
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enantiomer surface chemistry: conglomerate versus racemate formation on surfaces.
    Dutta S; Gellman AJ
    Chem Soc Rev; 2017 Dec; 46(24):7787-7839. PubMed ID: 29165467
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure and energetics of diphenylalanine self-assembling on Cu(110).
    Tomba G; Lingenfelder M; Costantini G; Kern K; Klappenberger F; Barth JV; Ciacchi LC; De Vita A
    J Phys Chem A; 2007 Dec; 111(49):12740-8. PubMed ID: 17999478
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simple models for two-dimensional tunable colloidal crystals in rotating ac electric fields.
    Elsner N; Royall CP; Vincent B; Snoswell DR
    J Chem Phys; 2009 Apr; 130(15):154901. PubMed ID: 19388766
    [TBL] [Abstract][Full Text] [Related]  

  • 49. "Chiral amnesia" as a driving force for solid-phase homochirality.
    Blackmond DG
    Chemistry; 2007; 13(12):3290-5. PubMed ID: 17366493
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-dimensional Monte Carlo simulations of internal aggregate structures in a colloidal dispersion composed of rod-like particles with magnetic moment normal to the particle axis.
    Satoh A
    J Colloid Interface Sci; 2008 Feb; 318(1):68-81. PubMed ID: 17988678
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coarse-grained molecular dynamics modeling of strongly associating fluids: thermodynamics, liquid structure, and dynamics of symmetric binary mixture fluids.
    Li T; Nies E
    J Phys Chem B; 2007 Jul; 111(28):8131-44. PubMed ID: 17585801
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A study of the phase behavior of a simple model of chiral molecules and enantiomeric mixtures.
    Cao M; Monson PA
    J Chem Phys; 2005 Feb; 122(5):54505. PubMed ID: 15740337
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular structure, symmetry, and shape as design elements in the fabrication of molecular crystals for second harmonic generation and the role of molecules-in-materials.
    Radhakrishnan TP
    Acc Chem Res; 2008 Mar; 41(3):367-76. PubMed ID: 18260652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Asymmetric noncovalent synthesis of self-assembled one-dimensional stacks by a chiral supramolecular auxiliary approach.
    George SJ; de Bruijn R; Tomović Ž; Van Averbeke B; Beljonne D; Lazzaroni R; Schenning AP; Meijer EW
    J Am Chem Soc; 2012 Oct; 134(42):17789-96. PubMed ID: 23030496
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular packing and symmetry of two-dimensional crystals.
    Plass KE; Grzesiak AL; Matzger AJ
    Acc Chem Res; 2007 Apr; 40(4):287-93. PubMed ID: 17437327
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chiral recognition and conglomerate crystallization induced by self-organization of cobalt(III) complexes of a tripodal ligand containing three imidazole groups.
    Nakamura H; Sunatsuki Y; Kojima M; Matsumoto N
    Inorg Chem; 2007 Oct; 46(20):8170-81. PubMed ID: 17824602
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two contact-point chiral distinction: model CHFClBr dimers.
    Garten S; Biedermann PU; Agranat I; Topiol S
    Chirality; 2005; 17 Suppl():S159-70. PubMed ID: 15849802
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Langmuir films of chiral molecules on mercury.
    Tamam L; Menahem T; Mastai Y; Sloutskin E; Yefet S; Deutsch M
    Langmuir; 2009 May; 25(9):5111-9. PubMed ID: 19256463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic model for the chiral symmetry breaking transition in the growth front of a conglomerate crystal phase.
    Asakura K; Nagasaka Y; Osanai S; Kondepudi DK
    J Phys Chem B; 2005 Feb; 109(4):1586-92. PubMed ID: 16851129
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A direct comparison of one- and two-component dendritic self-assembled materials: elucidating molecular recognition pathways.
    Huang B; Hirst AR; Smith DK; Castelletto V; Hamley IW
    J Am Chem Soc; 2005 May; 127(19):7130-9. PubMed ID: 15884955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.