BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17338680)

  • 1. Structure and ligand-binding site characteristics of the human P2Y11 nucleotide receptor deduced from computational modelling and mutational analysis.
    Zylberg J; Ecke D; Fischer B; Reiser G
    Biochem J; 2007 Jul; 405(2):277-86. PubMed ID: 17338680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular recognition in purinergic receptors. 1. A comprehensive computational study of the h-P2Y1-receptor.
    Major DT; Fischer B
    J Med Chem; 2004 Aug; 47(18):4391-404. PubMed ID: 15317452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diastereoselectivity of the P2Y11 nucleotide receptor: mutational analysis.
    Ecke D; Fischer B; Reiser G
    Br J Pharmacol; 2008 Dec; 155(8):1250-5. PubMed ID: 18820714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alanine-(87)-threonine polymorphism impairs signaling and internalization of the human P2Y11 receptor, when co-expressed with the P2Y1 receptor.
    Haas M; Shaaban A; Reiser G
    J Neurochem; 2014 May; 129(4):602-13. PubMed ID: 24524250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Architecture of P2Y nucleotide receptors: structural comparison based on sequence analysis, mutagenesis, and homology modeling.
    Costanzi S; Mamedova L; Gao ZG; Jacobson KA
    J Med Chem; 2004 Oct; 47(22):5393-404. PubMed ID: 15481977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor.
    Ecke D; Hanck T; Tulapurkar ME; Schäfer R; Kassack M; Stricker R; Reiser G
    Biochem J; 2008 Jan; 409(1):107-16. PubMed ID: 17824841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular recognition in purinergic receptors. 2. Diastereoselectivity of the h-P2Y1-receptor.
    Major DT; Nahum V; Wang Y; Reiser G; Fischer B
    J Med Chem; 2004 Aug; 47(18):4405-16. PubMed ID: 15317453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposite diastereoselective activation of P2Y1 and P2Y11 nucleotide receptors by adenosine 5'-O-(alpha-boranotriphosphate) analogues.
    Ecke D; Tulapurkar ME; Nahum V; Fischer B; Reiser G
    Br J Pharmacol; 2006 Oct; 149(4):416-23. PubMed ID: 16953187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor.
    Jiang Q; Guo D; Lee BX; Van Rhee AM; Kim YC; Nicholas RA; Schachter JB; Harden TK; Jacobson KA
    Mol Pharmacol; 1997 Sep; 52(3):499-507. PubMed ID: 9281613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular modeling of purinergic receptor P2Y12 and interaction with its antagonists.
    Zhan C; Yang J; Dong XC; Wang YL
    J Mol Graph Model; 2007 Jul; 26(1):20-31. PubMed ID: 17110146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human P2Y1 receptor: molecular modeling and site-directed mutagenesis as tools to identify agonist and antagonist recognition sites.
    Moro S; Guo D; Camaioni E; Boyer JL; Harden TK; Jacobson KA
    J Med Chem; 1998 Apr; 41(9):1456-66. PubMed ID: 9554879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the extracellular loops of G protein-coupled receptors in ligand recognition: a molecular modeling study of the human P2Y1 receptor.
    Moro S; Hoffmann C; Jacobson KA
    Biochemistry; 1999 Mar; 38(12):3498-507. PubMed ID: 10090736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes.
    von Kügelgen I
    Pharmacol Ther; 2006 Jun; 110(3):415-32. PubMed ID: 16257449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular determinants of the agonist binding domain of a P2X receptor channel.
    Yan Z; Liang Z; Tomic M; Obsil T; Stojilkovic SS
    Mol Pharmacol; 2005 Apr; 67(4):1078-88. PubMed ID: 15632318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of competitive antagonists of the P2Y1 receptor.
    Boyer JL; Romero-Avila T; Schachter JB; Harden TK
    Mol Pharmacol; 1996 Nov; 50(5):1323-9. PubMed ID: 8913364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hydrogen bonds between Arg423 and Glu472 and other key residues, Asp443, Ser477, and Pro489, are responsible for the formation and a different positioning of TNP-ATP and ATP within the nucleotide-binding site of Na(+)/K(+)-ATPase.
    Lánský Z; Kubala M; Ettrich R; Kutý M; Plásek J; Teisinger J; Schoner W; Amler E
    Biochemistry; 2004 Jul; 43(26):8303-11. PubMed ID: 15222743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An arginine/glutamine difference at the juxtaposition of transmembrane domain 6 and the third extracellular loop contributes to the markedly different nucleotide selectivities of human and canine P2Y11 receptors.
    Qi AD; Zambon AC; Insel PA; Nicholas RA
    Mol Pharmacol; 2001 Dec; 60(6):1375-82. PubMed ID: 11723245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the P2Y purinoceptor using rhodopsin as template.
    Van Rhee AM; Fischer B; Van Galen PJ; Jacobson KA
    Drug Des Discov; 1995 Nov; 13(2):133-54. PubMed ID: 8872457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling.
    White PJ; Webb TE; Boarder MR
    Mol Pharmacol; 2003 Jun; 63(6):1356-63. PubMed ID: 12761346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P2Y1-receptors in human platelets which are pharmacologically distinct from P2Y(ADP)-receptors.
    Fagura MS; Dainty IA; McKay GD; Kirk IP; Humphries RG; Robertson MJ; Dougall IG; Leff P
    Br J Pharmacol; 1998 May; 124(1):157-64. PubMed ID: 9630355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.