These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17339046)

  • 1. Mechanical sludge disintegration for the production of carbon source for biological nutrient removal.
    Kampas P; Parsons SA; Pearce P; Ledoux S; Vale P; Churchley J; Cartmell E
    Water Res; 2007 Apr; 41(8):1734-42. PubMed ID: 17339046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal.
    Soares A; Kampas P; Maillard S; Wood E; Brigg J; Tillotson M; Parsons SA; Cartmell E
    J Hazard Mater; 2010 Mar; 175(1-3):733-9. PubMed ID: 19932559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical sludge disintegration: providing an alternative carbon source for nutrient removal.
    Kampas P; Parsons SA; Pearce P; Ledoux S; Vale P; Churchley J; Cartmell E
    Environ Technol; 2007 Apr; 28(4):471-7. PubMed ID: 17500322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Components of released liquid from ultrasonic waste activated sludge disintegration.
    Wang F; Lu S; Ji M
    Ultrason Sonochem; 2006 May; 13(4):334-8. PubMed ID: 16011905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0.
    Yan Y; Feng L; Zhang C; Wisniewski C; Zhou Q
    Water Res; 2010 Jun; 44(11):3329-36. PubMed ID: 20371095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids.
    Ucisik AS; Henze M
    Water Res; 2008 Aug; 42(14):3729-38. PubMed ID: 18703214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The performance of the sludge pretreatment system with venturi tubes.
    Kim HJ; Nguyen DX; Bae JH
    Water Sci Technol; 2008; 57(1):131-7. PubMed ID: 18192750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste.
    Kim HJ; Choi YG; Kim GD; Kim SH; Chung TH
    Water Sci Technol; 2005; 52(10-11):51-9. PubMed ID: 16459776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pre-hydrolysis on floc structure.
    Chu CP; Lee DJ
    J Environ Manage; 2004 Jul; 71(3):285-92. PubMed ID: 15158290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation.
    Zhang P; Zhang G; Wang W
    Bioresour Technol; 2007 Jan; 98(1):207-10. PubMed ID: 16427781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of primary sludge fermentation products on mass balance for biological treatment.
    Ubay-Cokgor E; Oktay S; Zengin GE; Artan N; Orhon D
    Water Sci Technol; 2005; 51(11):105-14. PubMed ID: 16114623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment.
    Shanableh A; Jomaa S
    Water Sci Technol; 2001; 44(10):129-35. PubMed ID: 11794643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The investigation and assessment of characteristics of waste activated sludge after ultrasound pretreatment.
    Yagci N; Akpinar I
    Environ Technol; 2011 Jan; 32(1-2):221-30. PubMed ID: 21473284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An internal carbon source for improving biological nutrient removal.
    Kampas P; Parsons SA; Pearce P; Ledoux S; Vale P; Cartmell E; Soares A
    Bioresour Technol; 2009 Jan; 100(1):149-54. PubMed ID: 18599292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimum design and operation of primary sludge fermentation schemes for volatile fatty acids production.
    Chanona J; Ribes J; Seco A; Ferrer J
    Water Res; 2006 Jan; 40(1):53-60. PubMed ID: 16343582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatile fatty acid impacts on nitrite oxidation and carbon dioxide fixation in activated sludge.
    Oguz MT; Robinson KG; Layton AC; Sayler GS
    Water Res; 2006 Feb; 40(4):665-74. PubMed ID: 16436292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation.
    Xiao B; Liu J
    J Hazard Mater; 2009 Aug; 168(1):163-7. PubMed ID: 19278778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of salt concentration on floc characteristics and pollutants removal efficiencies in treatment of seafood wastewater by SBR.
    Moon BH; Seo GT; Lee TS; Kim SS; Yoon CH
    Water Sci Technol; 2003; 47(1):65-70. PubMed ID: 12578175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation.
    Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R
    Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observations on ozone treatment of excess sludge.
    Zhao YX; Yin J; Yu HL; Han N; Tian FJ
    Water Sci Technol; 2007; 56(9):167-75. PubMed ID: 18025744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.