These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 1733916)

  • 1. Middle-ear transmission: acoustic versus ossicular coupling in cat and human.
    Peake WT; Rosowski JJ; Lynch TJ
    Hear Res; 1992 Jan; 57(2):245-68. PubMed ID: 1733916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of middle ear mechanics and application to diseased and reconstructed ears.
    Merchant SN; Ravicz ME; Puria S; Voss SE; Whittemore KR; Peake WT; Rosowski JJ
    Am J Otol; 1997 Mar; 18(2):139-54. PubMed ID: 9093668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-ossicular signal transmission in human middle ears: Experimental assessment of the "acoustic route" with perforated tympanic membranes.
    Voss SE; Rosowski JJ; Merchant SN; Peake WT
    J Acoust Soc Am; 2007 Oct; 122(4):2135-53. PubMed ID: 17902851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toynbee Memorial Lecture 1997. Middle ear mechanics in normal, diseased and reconstructed ears.
    Merchant SN; Ravicz ME; Voss SE; Peake WT; Rosowski JJ
    J Laryngol Otol; 1998 Aug; 112(8):715-31. PubMed ID: 9850313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is the pressure difference between the oval and round windows the effective acoustic stimulus for the cochlea?
    Voss SE; Rosowski JJ; Peake WT
    J Acoust Soc Am; 1996 Sep; 100(3):1602-16. PubMed ID: 8817890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch.
    Chhan D; Bowers P; McKinnon ML; Rosowski JJ
    Hear Res; 2016 Oct; 340():144-152. PubMed ID: 26923425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ossicular chain deformity on reverse stimulation considering the overflow characteristics of third windows.
    Liu H; Xue L; Yang J; Cheng G; Zhou L; Huang X
    Comput Methods Biomech Biomed Engin; 2022 Feb; 25(3):257-272. PubMed ID: 34229548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements.
    Teoh SW; Flandermeyer DT; Rosowski JJ
    Hear Res; 1997 Apr; 106(1-2):39-65. PubMed ID: 9112106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Middle-ear phenomenology: the view from the three windows.
    Shera CA; Zweig G
    J Acoust Soc Am; 1992 Sep; 92(3):1356-70. PubMed ID: 1401522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D-printed functioning anatomical human middle ear model.
    Kuru I; Maier H; Müller M; Lenarz T; Lueth TC
    Hear Res; 2016 Oct; 340():204-213. PubMed ID: 26772730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Silastic sheeting over the round window niche on sound transmission in the intact human middle ear.
    Alian WA; Majdalawieh OF; Van Wijhe RG; Ejnell H; Bance M
    J Otolaryngol Head Neck Surg; 2012 Feb; 41(1):1-7. PubMed ID: 22498261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (Felis margarita).
    Huang GT; Rosowski JJ; Ravicz ME; Peake WT
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Oct; 188(9):663-81. PubMed ID: 12397438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limits on normal cochlear 'third' windows provided by previous investigations of additional sound paths into and out of the cat inner ear.
    Rosowski JJ; Bowers P; Nakajima HH
    Hear Res; 2018 Mar; 360():3-13. PubMed ID: 29169906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic impedances at the oval window, and sound pressure transformation of the middle ear in Norwegian cattle.
    Kringlebotn M
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1094-104. PubMed ID: 11008812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-element modeling of the normal and surgically repaired cat middle ear.
    Ladak HM; Funnell WR
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):933-44. PubMed ID: 8759947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.