These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 17339352)
1. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Enjalbert B; MacCallum DM; Odds FC; Brown AJ Infect Immun; 2007 May; 75(5):2143-51. PubMed ID: 17339352 [TBL] [Abstract][Full Text] [Related]
2. Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. Miramón P; Dunker C; Windecker H; Bohovych IM; Brown AJ; Kurzai O; Hube B PLoS One; 2012; 7(12):e52850. PubMed ID: 23285201 [TBL] [Abstract][Full Text] [Related]
3. Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. Mayer FL; Wilson D; Jacobsen ID; Miramón P; Slesiona S; Bohovych IM; Brown AJ; Hube B PLoS One; 2012; 7(6):e38584. PubMed ID: 22685587 [TBL] [Abstract][Full Text] [Related]
4. Multiple Alternative Carbon Pathways Combine To Promote Candida albicans Stress Resistance, Immune Interactions, and Virulence. Williams RB; Lorenz MC mBio; 2020 Jan; 11(1):. PubMed ID: 31937647 [TBL] [Abstract][Full Text] [Related]
6. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Barelle CJ; Priest CL; Maccallum DM; Gow NA; Odds FC; Brown AJ Cell Microbiol; 2006 Jun; 8(6):961-71. PubMed ID: 16681837 [TBL] [Abstract][Full Text] [Related]
7. Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans. da Silva Dantas A; Patterson MJ; Smith DA; Maccallum DM; Erwig LP; Morgan BA; Quinn J Mol Cell Biol; 2010 Oct; 30(19):4550-63. PubMed ID: 20679492 [TBL] [Abstract][Full Text] [Related]
8. Functional specialization and differential regulation of short-chain carboxylic acid transporters in the pathogen Candida albicans. Vieira N; Casal M; Johansson B; MacCallum DM; Brown AJ; Paiva S Mol Microbiol; 2010 Mar; 75(6):1337-54. PubMed ID: 19968788 [TBL] [Abstract][Full Text] [Related]
9. Activation and alliance of regulatory pathways in C. albicans during mammalian infection. Xu W; Solis NV; Ehrlich RL; Woolford CA; Filler SG; Mitchell AP PLoS Biol; 2015 Feb; 13(2):e1002076. PubMed ID: 25693184 [TBL] [Abstract][Full Text] [Related]
10. Epigenetic Control of Oxidative Stresses by Histone Acetyltransferases in Kim J; Park S; Lee JS J Microbiol Biotechnol; 2018 Feb; 28(2):181-189. PubMed ID: 29169224 [No Abstract] [Full Text] [Related]
11. Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans. Tillmann AT; Strijbis K; Cameron G; Radmaneshfar E; Thiel M; Munro CA; MacCallum DM; Distel B; Gow NA; Brown AJ PLoS One; 2015; 10(6):e0126940. PubMed ID: 26039593 [TBL] [Abstract][Full Text] [Related]
12. Distinct roles of Candida albicans-specific genes in host-pathogen interactions. Wilson D; Mayer FL; Miramón P; Citiulo F; Slesiona S; Jacobsen ID; Hube B Eukaryot Cell; 2014 Aug; 13(8):977-89. PubMed ID: 24610660 [TBL] [Abstract][Full Text] [Related]
13. Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Davis D; Edwards JE; Mitchell AP; Ibrahim AS Infect Immun; 2000 Oct; 68(10):5953-9. PubMed ID: 10992507 [TBL] [Abstract][Full Text] [Related]
14. Interactions of Both Pathogenic and Nonpathogenic CUG Clade Pountain AW; Collette JR; Farrell WM; Lorenz MC mBio; 2021 Dec; 12(6):e0331721. PubMed ID: 34903044 [No Abstract] [Full Text] [Related]
15. In vivo systematic analysis of Candida albicans Zn2-Cys6 transcription factors mutants for mice organ colonization. Vandeputte P; Ischer F; Sanglard D; Coste AT PLoS One; 2011; 6(10):e26962. PubMed ID: 22073120 [TBL] [Abstract][Full Text] [Related]
16. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699 [TBL] [Abstract][Full Text] [Related]
17. N-acetylglucosamine (GlcNAc)-inducible gene GIG2 is a novel component of GlcNAc metabolism in Candida albicans. Ghosh S; Hanumantha Rao K; Bhavesh NS; Das G; Dwivedi VP; Datta A Eukaryot Cell; 2014 Jan; 13(1):66-76. PubMed ID: 24186949 [TBL] [Abstract][Full Text] [Related]
18. Differential activation of a Candida albicans virulence gene family during infection. Staib P; Kretschmar M; Nichterlein T; Hof H; Morschhäuser J Proc Natl Acad Sci U S A; 2000 May; 97(11):6102-7. PubMed ID: 10811913 [TBL] [Abstract][Full Text] [Related]
19. Goa1p of Candida albicans localizes to the mitochondria during stress and is required for mitochondrial function and virulence. Bambach A; Fernandes MP; Ghosh A; Kruppa M; Alex D; Li D; Fonzi WA; Chauhan N; Sun N; Agrellos OA; Vercesi AE; Rolfes RJ; Calderone R Eukaryot Cell; 2009 Nov; 8(11):1706-20. PubMed ID: 19717740 [TBL] [Abstract][Full Text] [Related]
20. Virulence and pathogenicity of a Candida albicans mutant with reduced filamentation. Peroumal D; Manohar K; Patel SK; Kumari P; Sahu SR; Acharya N Cell Microbiol; 2019 Dec; 21(12):e13103. PubMed ID: 31424154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]