BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 17339369)

  • 21. Phylogenetic affinities of tarsier in the context of primate Alu repeats.
    Zietkiewicz E; Richer C; Labuda D
    Mol Phylogenet Evol; 1999 Feb; 11(1):77-83. PubMed ID: 10082612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of the Xenopus piggyBac transposon family TxpB: domesticated and untamed strategies of transposon subfamilies.
    Hikosaka A; Kobayashi T; Saito Y; Kawahara A
    Mol Biol Evol; 2007 Dec; 24(12):2648-56. PubMed ID: 17934208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of an X-linked primate-specific micro RNA cluster.
    Li J; Liu Y; Dong D; Zhang Z
    Mol Biol Evol; 2010 Mar; 27(3):671-83. PubMed ID: 19933172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HERV-H endogenous retroviruses: presence in the New World branch but amplification in the Old World primate lineage.
    Mager DL; Freeman JD
    Virology; 1995 Nov; 213(2):395-404. PubMed ID: 7491764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transposon-free regions in mammalian genomes.
    Simons C; Pheasant M; Makunin IV; Mattick JS
    Genome Res; 2006 Feb; 16(2):164-72. PubMed ID: 16365385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A non-human primate BAC resource to study interchromosomal segmental duplications.
    Kirsch S; Hodler C; Schempp W
    Cytogenet Genome Res; 2009; 125(4):253-9. PubMed ID: 19864887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The identification of retro-DNAs in primate genomes as DNA transposons mobilizing via retrotransposition.
    Tang W; Liang P
    F1000Res; 2023; 12():255. PubMed ID: 38915770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human genetic disorders, a phylogenetic perspective.
    Martinez J; Dugaiczyk LJ; Zielinski R; Dugaiczyk A
    J Mol Biol; 2001 May; 308(4):587-96. PubMed ID: 11350162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phylogenetic shadowing of primate sequences to find functional regions of the human genome.
    Boffelli D; McAuliffe J; Ovcharenko D; Lewis KD; Ovcharenko I; Pachter L; Rubin EM
    Science; 2003 Feb; 299(5611):1391-4. PubMed ID: 12610304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Evolutionary recent insertions of mobile elements and their contribution to the structure of human genome].
    Baskaev KK; Buzdin AA
    Zh Obshch Biol; 2012; 73(1):3-20. PubMed ID: 22567964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the human Alu Ya-lineage.
    Otieno AC; Carter AB; Hedges DJ; Walker JA; Ray DA; Garber RK; Anders BA; Stoilova N; Laborde ME; Fowlkes JD; Huang CH; Perodeau B; Batzer MA
    J Mol Biol; 2004 Sep; 342(1):109-18. PubMed ID: 15313610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PiggyBac-ing on a primate genome: novel elements, recent activity and horizontal transfer.
    Pagan HJ; Smith JD; Hubley RM; Ray DA
    Genome Biol Evol; 2010 Jul; 2():293-303. PubMed ID: 20624734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alu-mediated phylogenetic novelties in gene regulation and development.
    Hamdi HK; Nishio H; Tavis J; Zielinski R; Dugaiczyk A
    J Mol Biol; 2000 Jun; 299(4):931-9. PubMed ID: 10843848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial insertions into primate nuclear genomes suggest the use of numts as a tool for phylogeny.
    Hazkani-Covo E
    Mol Biol Evol; 2009 Oct; 26(10):2175-9. PubMed ID: 19578158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods.
    Pace JK; Gilbert C; Clark MS; Feschotte C
    Proc Natl Acad Sci U S A; 2008 Nov; 105(44):17023-8. PubMed ID: 18936483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus.
    Ray DA; Feschotte C; Pagan HJ; Smith JD; Pritham EJ; Arensburger P; Atkinson PW; Craig NL
    Genome Res; 2008 May; 18(5):717-28. PubMed ID: 18340040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The diversity of class II transposable elements in mammalian genomes has arisen from ancestral phylogenetic splits during ancient waves of proliferation through the genome.
    Hellen EH; Brookfield JF
    Mol Biol Evol; 2013 Jan; 30(1):100-8. PubMed ID: 22923465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Caenorhabditis briggsae genome contains active CbmaT1 and Tcb1 transposons.
    Brownlie JC; Johnson NM; Whyard S
    Mol Genet Genomics; 2005 Mar; 273(1):92-101. PubMed ID: 15702348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interspecies insertion polymorphism analysis reveals recent activity of transposable elements in extant coelacanths.
    Naville M; Chalopin D; Volff JN
    PLoS One; 2014; 9(12):e114382. PubMed ID: 25470617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionary history of the human endogenous retrovirus family ERV9.
    Costas J; Naveira H
    Mol Biol Evol; 2000 Feb; 17(2):320-30. PubMed ID: 10677855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.