These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1733941)

  • 1. Tolerance of T4 lysozyme to proline substitutions within the long interdomain alpha-helix illustrates the adaptability of proteins to potentially destabilizing lesions.
    Sauer UH; San DP; Matthews BW
    J Biol Chem; 1992 Feb; 267(4):2393-9. PubMed ID: 1733941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and thermodynamic analysis of the packing of two alpha-helices in bacteriophage T4 lysozyme.
    Daopin S; Alber T; Baase WA; Wozniak JA; Matthews BW
    J Mol Biol; 1991 Sep; 221(2):647-67. PubMed ID: 1920439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replacements of Pro86 in phage T4 lysozyme extend an alpha-helix but do not alter protein stability.
    Alber T; Bell JA; Sun DP; Nicholson H; Wozniak JA; Cook S; Matthews BW
    Science; 1988 Feb; 239(4840):631-5. PubMed ID: 3277275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme.
    Nicholson H; Anderson DE; Dao-pin S; Matthews BW
    Biochemistry; 1991 Oct; 30(41):9816-28. PubMed ID: 1911773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a simplification of the protein folding problem: a stabilizing polyalanine alpha-helix engineered in T4 lysozyme.
    Zhang XJ; Baase WA; Matthews BW
    Biochemistry; 1991 Feb; 30(8):2012-7. PubMed ID: 1998663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozyme.
    Dao-pin S; Anderson DE; Baase WA; Dahlquist FW; Matthews BW
    Biochemistry; 1991 Dec; 30(49):11521-9. PubMed ID: 1747370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent, additive effects on both structure and stability.
    Zhang XJ; Baase WA; Matthews BW
    Protein Sci; 1992 Jun; 1(6):761-76. PubMed ID: 1304917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a stabilizing disulfide bridge mutant that closes the active-site cleft of T4 lysozyme.
    Jacobson RH; Matsumura M; Faber HR; Matthews BW
    Protein Sci; 1992 Jan; 1(1):46-57. PubMed ID: 1304882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Destabilizing effect of proline substitutions in two helical regions of T4 lysozyme: leucine 66 to proline and leucine 91 to proline.
    Gray TM; Arnoys EJ; Blankespoor S; Born T; Jagar R; Everman R; Plowman D; Stair A; Zhang D
    Protein Sci; 1996 Apr; 5(4):742-51. PubMed ID: 8845764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissection of helix capping in T4 lysozyme by structural and thermodynamic analysis of six amino acid substitutions at Thr 59.
    Bell JA; Becktel WJ; Sauer U; Baase WA; Matthews BW
    Biochemistry; 1992 Apr; 31(14):3590-6. PubMed ID: 1567817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic mutation of bacteriophage T4 lysozyme.
    Rennell D; Bouvier SE; Hardy LW; Poteete AR
    J Mol Biol; 1991 Nov; 222(1):67-88. PubMed ID: 1942069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein.
    Alber T; Sun DP; Nye JA; Muchmore DC; Matthews BW
    Biochemistry; 1987 Jun; 26(13):3754-8. PubMed ID: 3651410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mutant T4 lysozyme (Val 131----Ala) designed to increase thermostability by the reduction of strain within an alpha-helix.
    Dao-Pin S; Baase WA; Matthews BW
    Proteins; 1990; 7(2):198-204. PubMed ID: 2326253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid substitutions far from the active site of bacteriophage T4 lysozyme reduce catalytic activity and suggest that the C-terminal lobe of the enzyme participates in substrate binding.
    Grütter MG; Matthews BW
    J Mol Biol; 1982 Jan; 154(3):525-35. PubMed ID: 7077670
    [No Abstract]   [Full Text] [Related]  

  • 15. Second-site revertants of an inactive T4 lysozyme mutant restore activity by restructuring the active site cleft.
    Poteete AR; Sun DP; Nicholson H; Matthews BW
    Biochemistry; 1991 Feb; 30(5):1425-32. PubMed ID: 1991123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mutant T4 lysozyme displays five different crystal conformations.
    Faber HR; Matthews BW
    Nature; 1990 Nov; 348(6298):263-6. PubMed ID: 2234094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution structure of the temperature-sensitive mutant of phage lysozyme, Arg 96----His.
    Weaver LH; Gray TM; Grütter MG; Anderson DE; Wozniak JA; Dahlquist FW; Matthews BW
    Biochemistry; 1989 May; 28(9):3793-7. PubMed ID: 2665808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability.
    Dao-pin S; Söderlind E; Baase WA; Wozniak JA; Sauer U; Matthews BW
    J Mol Biol; 1991 Oct; 221(3):873-87. PubMed ID: 1942034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural studies of mutants of T4 lysozyme that alter hydrophobic stabilization.
    Matsumura M; Wozniak JA; Sun DP; Matthews BW
    J Biol Chem; 1989 Sep; 264(27):16059-66. PubMed ID: 2674124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding.
    Matthews BW; Nicholson H; Becktel WJ
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6663-7. PubMed ID: 3477797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.