These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 17339814)
21. Hindlimb muscle atrophy occurs from peripheral nerve damage in a rat neuropathic pain model. Choe MA; Kim KH; An GJ; Lee KS; Heitkemper M Biol Res Nurs; 2011 Jan; 13(1):44-54. PubMed ID: 21199814 [TBL] [Abstract][Full Text] [Related]
22. Clenbuterol accelerates recovery after immobilization-induced atrophy of rat hindlimb muscle. Suzuki H; Yoshikawa Y; Tsujimoto H; Kitaura T; Muraoka I Acta Histochem; 2020 Jan; 122(1):151453. PubMed ID: 31761272 [TBL] [Abstract][Full Text] [Related]
23. Effect of Dipsaci radix on hind limb muscle atrophy of sciatic nerve transected rats. Jung HS; Noh CK; Ma SH; Hong EK; Sohn NW; Kim YB; Kim SH; Sohn Y Am J Chin Med; 2009; 37(6):1069-84. PubMed ID: 19938217 [TBL] [Abstract][Full Text] [Related]
25. Early changes in muscle fiber size and gene expression in response to spinal cord transection and exercise. Dupont-Versteegden EE; Houlé JD; Gurley CM; Peterson CA Am J Physiol; 1998 Oct; 275(4):C1124-33. PubMed ID: 9755066 [TBL] [Abstract][Full Text] [Related]
26. Adaptation in synergistic muscles to soleus and plantaris muscle removal in the rat hindlimb. Kandarian SC; Young JC; Gomez EE Life Sci; 1992; 51(21):1691-8. PubMed ID: 1435077 [TBL] [Abstract][Full Text] [Related]
27. The effects of non-weight bearing on skeletal muscle in older rats: an interrupted bout versus an uninterrupted bout. Gehrke AG; Krull MS; McDonald RS; Sparby T; Thoele J; Troje SW; ZumBerge J; Thompson LV Biol Res Nurs; 2004 Jan; 5(3):195-202. PubMed ID: 14737920 [TBL] [Abstract][Full Text] [Related]
28. [Effects of electroacupuncture combined with passive stretch exercise on disused muscle atrophy and expression of skeletal troponin in mice]. Bai ZM; Wang ZP; Guo MH; Zhang LJ; Xu JL; Yu L; Li CR Zhen Ci Yan Jiu; 2020 Sep; 45(9):720-5. PubMed ID: 32959554 [TBL] [Abstract][Full Text] [Related]
29. Resistance exercise and growth hormone as countermeasures for skeletal muscle atrophy in hindlimb-suspended rats. Linderman JK; Gosselink KL; Booth FW; Mukku VR; Grindeland RE Am J Physiol; 1994 Aug; 267(2 Pt 2):R365-71. PubMed ID: 8067444 [TBL] [Abstract][Full Text] [Related]
30. Cycling exercise and fetal spinal cord transplantation act synergistically on atrophied muscle following chronic spinal cord injury in rats. Peterson CA; Murphy RJ; Dupont-Versteegden EE; Houlé JD Neurorehabil Neural Repair; 2000; 14(2):85-91. PubMed ID: 15470819 [TBL] [Abstract][Full Text] [Related]
31. Effects of ovariectomy and hindlimb unloading on skeletal muscle. Fisher JS; Hasser EM; Brown M J Appl Physiol (1985); 1998 Oct; 85(4):1316-21. PubMed ID: 9760322 [TBL] [Abstract][Full Text] [Related]
32. Increased Skeletal Muscle Fiber Cross-Sectional Area, Muscle Phenotype Shift, and Altered Insulin Signaling in Rat Hindlimb Muscles in a Prenatally Androgenized Rat Model for Polycystic Ovary Syndrome. DeChick A; Hetz R; Lee J; Speelman DL Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33113794 [TBL] [Abstract][Full Text] [Related]
33. Agonist muscle adaptation accompanied by antagonist muscle atrophy in the hindlimb of mice following stretch-shortening contraction training. Rader EP; Naimo MA; Ensey J; Baker BA BMC Musculoskelet Disord; 2017 Feb; 18(1):60. PubMed ID: 28148306 [TBL] [Abstract][Full Text] [Related]
34. Nucleoprotein supplementation enhances the recovery of rat soleus mass with reloading after hindlimb unloading-induced atrophy via myonuclei accretion and increased protein synthesis. Nakanishi R; Hirayama Y; Tanaka M; Maeshige N; Kondo H; Ishihara A; Roy RR; Fujino H Nutr Res; 2016 Dec; 36(12):1335-1344. PubMed ID: 27866827 [TBL] [Abstract][Full Text] [Related]
35. Recovery of reinnervating rat muscle after cast immobilization. Herbison GJ; Jaweed MM; Ditunno JF Exp Neurol; 1984 Aug; 85(2):239-48. PubMed ID: 6745373 [TBL] [Abstract][Full Text] [Related]
36. Clenbuterol attenuates muscle atrophy and dysfunction in hindlimb-suspended rats. Dodd SL; Koesterer TJ Aviat Space Environ Med; 2002 Jul; 73(7):635-9. PubMed ID: 12137098 [TBL] [Abstract][Full Text] [Related]
37. The role of neural and mechanical influences in maintaining normal fast and slow muscle properties. Ohira Y; Yoshinaga T; Ohara M; Kawano F; Wang XD; Higo Y; Terada M; Matsuoka Y; Roy RR; Edgerton VR Cells Tissues Organs; 2006; 182(3-4):129-42. PubMed ID: 16914916 [TBL] [Abstract][Full Text] [Related]
38. Skeletal muscle IGF-binding protein-3 and -5 expressions are age, muscle, and load dependent. Spangenburg EE; Abraha T; Childs TE; Pattison JS; Booth FW Am J Physiol Endocrinol Metab; 2003 Feb; 284(2):E340-50. PubMed ID: 12397024 [TBL] [Abstract][Full Text] [Related]
39. Compared effects of hindlimb unloading versus terrestrial deafferentation on muscular properties of the rat soleus. Picquet F; Falempin M Exp Neurol; 2003 Jul; 182(1):186-94. PubMed ID: 12821389 [TBL] [Abstract][Full Text] [Related]
40. Acute antioxidant supplementation and skeletal muscle vascular conductance in aged rats: role of exercise and fiber type. Hirai DM; Copp SW; Schwagerl PJ; Haub MD; Poole DC; Musch TI Am J Physiol Heart Circ Physiol; 2011 Apr; 300(4):H1536-44. PubMed ID: 21239634 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]