These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 1733988)

  • 1. Heel-off perturbation during gait initiation: biomechanical analysis using triaxial accelerometry and a force plate.
    Brenière Y; Dietrich G
    J Biomech; 1992 Feb; 25(2):121-7. PubMed ID: 1733988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does the heel-off posture modify gait initiation parameter programming?
    Couillandre A; Brenière Y
    J Mot Behav; 2003 Sep; 35(3):221-7. PubMed ID: 12873838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voluntary toe-walking gait initiation: electromyographical and biomechanical aspects.
    Couillandre A; Maton B; Brenière Y
    Exp Brain Res; 2002 Dec; 147(3):313-21. PubMed ID: 12428139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method to assess temporal features of gait initiation with a single force plate.
    Moineau B; Boisgontier MP; Barbieri G; Nougier V
    Gait Posture; 2014; 39(1):631-3. PubMed ID: 23916413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensation for inertial and gravity effects in a moving force platform.
    Hnat SK; van Basten BJH; van den Bogert AJ
    J Biomech; 2018 Jun; 75():96-101. PubMed ID: 29789150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical analysis of swing-through gait in paraplegic and non-disabled individuals.
    Noreau L; Richards CL; Comeau F; Tardif D
    J Biomech; 1995 Jun; 28(6):689-700. PubMed ID: 7601868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking.
    Gruben KG; Boehm WL
    J Biomech; 2014 Apr; 47(6):1389-94. PubMed ID: 24524989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementary mechanisms for upright balance during walking.
    Reimann H; Fettrow TD; Thompson ED; Agada P; McFadyen BJ; Jeka JJ
    PLoS One; 2017; 12(2):e0172215. PubMed ID: 28234936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematic analysis of obstacle clearance during locomotion.
    Austin GP; Garrett GE; Bohannon RW
    Gait Posture; 1999 Oct; 10(2):109-20. PubMed ID: 10502644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion.
    Mulavara AP; Bloomberg JJ
    J Vestib Res; 2002-2003; 12(5-6):255-69. PubMed ID: 14501102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact Accelerations of Barefoot and Shod Running.
    Thompson M; Seegmiller J; McGowan CP
    Int J Sports Med; 2016 May; 37(5):364-8. PubMed ID: 26837933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative assessment of gait determinants during single stance via a three-dimensional model--Part 1. Normal gait.
    Pandy MG; Berme N
    J Biomech; 1989; 22(6-7):717-24. PubMed ID: 2808453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of anticipatory postural adjustments and gravity in gait initiation.
    Lepers R; Brenière Y
    Exp Brain Res; 1995; 107(1):118-24. PubMed ID: 8751069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of gait events using an externally mounted shank accelerometer.
    Sinclair J; Hobbs SJ; Protheroe L; Edmundson CJ; Greenhalgh A
    J Appl Biomech; 2013 Feb; 29(1):118-22. PubMed ID: 23462448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validation of an accelerometer-based method for quantifying gait events.
    Boutaayamou M; Schwartz C; Stamatakis J; Denoël V; Maquet D; Forthomme B; Croisier JL; Macq B; Verly JG; Garraux G; Brüls O
    Med Eng Phys; 2015 Feb; 37(2):226-32. PubMed ID: 25618221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of swing heel-off event in gait initiation using force-plate data.
    Caderby T; Yiou E; Peyrot N; Bonazzi B; Dalleau G
    Gait Posture; 2013 Mar; 37(3):463-6. PubMed ID: 22980912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static optimal estimation of joint accelerations for inverse dynamics problem solution.
    Cahouët V; Luc M; David A
    J Biomech; 2002 Nov; 35(11):1507-13. PubMed ID: 12413970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations.
    Rueterbories J; Spaich EG; Andersen OK
    Med Eng Phys; 2014 Apr; 36(4):502-8. PubMed ID: 24182424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
    Xu X; McGorry RW; Chou LS; Lin JH; Chang CC
    Gait Posture; 2015 Jul; 42(2):145-51. PubMed ID: 26002604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.