BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17340626)

  • 1. Nuclear cysteine-protease involved in male chromatin remodeling after fertilization is ubiquitously distributed during sea urchin development.
    Gourdet C; Iribarren C; Morin V; Bustos P; Puchi M; Imschenetzky M
    J Cell Biochem; 2007 May; 101(1):1-8. PubMed ID: 17340626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine-protease involved in male chromatin remodeling after fertilization co-localizes with alpha-tubulin at mitosis.
    Concha C; Morin V; Bustos P; Genevière AM; Heck MM; Puchi M; Imschenetzky M
    J Cell Physiol; 2005 Feb; 202(2):602-7. PubMed ID: 15389576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microinjection of an antibody against the cysteine-protease involved in male chromatin remodeling blocks the development of sea urchin embryos at the initial cell cycle.
    Puchi M; Quiñones K; Concha C; Iribarren C; Bustos P; Morin V; Genevière AM; Imschenetzky M
    J Cell Biochem; 2006 May; 98(2):335-42. PubMed ID: 16408295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cathepsin L inhibitor I blocks mitotic chromosomes decondensation during cleavage cell cycles of sea urchin embryos.
    Morin V; Sanchez A; Quiñones K; Huidobro JG; Iribarren C; Bustos P; Puchi M; Genevière AM; Imschenetzky M
    J Cell Physiol; 2008 Sep; 216(3):790-5. PubMed ID: 18425772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sperm nucleosomes disassembly is a requirement for histones proteolysis during male pronucleus formation.
    Iribarren C; Morin V; Puchi M; Imschenetzky M
    J Cell Biochem; 2008 Feb; 103(2):447-55. PubMed ID: 17541954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a cysteine protease responsible for degradation of sperm histones during male pronucleus remodeling in sea urchins.
    Imschenetzky M; Díaz F; Montecino M; Sierra F; Puchi M
    J Cell Biochem; 1997 Dec; 67(3):304-15. PubMed ID: 9361186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonic-stage-dependent changes in the level of eIF4E-binding proteins during early development of sea urchin embryos.
    Salaün P; Boulben S; Mulner-Lorillon O; Bellé R; Sonenberg N; Morales J; Cormier P
    J Cell Sci; 2005 Apr; 118(Pt 7):1385-94. PubMed ID: 15769855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular trafficking of the nuclear receptor COUP-TF in the early embryonic cell cycle.
    Vlahou A; Flytzanis CN
    Dev Biol; 2000 Feb; 218(2):284-98. PubMed ID: 10656770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of cysteine protease activity disturbs DNA replication and prevents mitosis in the early mitotic cell cycles of sea urchin embryos.
    Concha C; Monardes A; Even Y; Morin V; Puchi M; Imschenetzky M; Genevière AM
    J Cell Physiol; 2005 Aug; 204(2):693-703. PubMed ID: 15795898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservative segregation of maternally inherited CS histone variants in larval stages of sea urchin development.
    Oliver MI; Rodríguez C; Bustos P; Morín V; Gutierrez S; Montecino M; Genevière AM; Puchi M; Imschenetzky M
    J Cell Biochem; 2003 Mar; 88(4):643-9. PubMed ID: 12577298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. During male pronuclei formation chromatin remodeling is uncoupled from nucleus decondensation.
    Monardes A; Iribarren C; Morin V; Bustos P; Puchi M; Imschenetzky M
    J Cell Biochem; 2005 Oct; 96(2):235-41. PubMed ID: 16088960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new nuclear protease with cathepsin L properties is present in HeLa and Caco-2 cells.
    Puchi M; García-Huidobro J; Cordova C; Aguilar R; Dufey E; Imschenetzky M; Bustos P; Morin V
    J Cell Biochem; 2010 Dec; 111(5):1099-106. PubMed ID: 20506357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmentally regulated protease expression during sea urchin embryogenesis.
    Vafa O; Nishioka D
    Mol Reprod Dev; 1995 Jan; 40(1):36-47. PubMed ID: 7702868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bouyant density of the DNA of sea urchin embryos at different stages of development.
    Borkhsenius SN; Andreeva LI; Vorob'ev VI
    Mol Biol; 1975 Jan; 8(4):461-6. PubMed ID: 1128507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental expression of D-galactoside-binding lectin in sea urchin (Anthocidaris crassispina) eggs.
    Ozeki Y; Yokota Y; Kato KH; Titani K; Matsui T
    Exp Cell Res; 1995 Feb; 216(2):318-24. PubMed ID: 7843276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoplasm of sea urchin unfertilized eggs contains a nucleosome remodeling activity.
    Medina R; Gutiérrez J; Puchi M; Imschenetzky M; Montecino M
    J Cell Biochem; 2001; 83(4):554-62. PubMed ID: 11746499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteolytic cleavage of the cell surface protein p160 is required for detachment of the fertilization envelope in the sea urchin.
    Haley SA; Wessel GM
    Dev Biol; 2004 Aug; 272(1):191-202. PubMed ID: 15242800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of the aquatic research facility and fertilization syringe unit to study sea urchin development in space.
    Schatten H; Chakrabarti A; Levine HG; Anderson K
    J Gravit Physiol; 1999 Oct; 6(2):43-53. PubMed ID: 11543085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the sea urchin major vault protein: a possible role for vault ribonucleoprotein particles in nucleocytoplasmic transport.
    Hamill DR; Suprenant KA
    Dev Biol; 1997 Oct; 190(1):117-28. PubMed ID: 9331335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.