These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17341196)

  • 1. Microfluidic techniques for studying the nervous system.
    Gross PG; Weiner LP; Kartalov EP; Scherer A
    Crit Rev Neurobiol; 2005; 17(3-4):119-44. PubMed ID: 17341196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of microfluidics for neuronal studies.
    Gross PG; Kartalov EP; Scherer A; Weiner LP
    J Neurol Sci; 2007 Jan; 252(2):135-43. PubMed ID: 17207502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian electrophysiology on a microfluidic platform.
    Ionescu-Zanetti C; Shaw RM; Seo J; Jan YN; Jan LY; Lee LP
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9112-7. PubMed ID: 15967996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A gradient-generating microfluidic device for cell biology.
    Chung BG; Manbachi A; Saadi W; Lin F; Jeon NL; Khademhosseini A
    J Vis Exp; 2007; (7):271. PubMed ID: 18989442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic chip for axonal isolation and electrophysiological measurements.
    Jokinen V; Sakha P; Suvanto P; Rivera C; Franssila S; Lauri SE; Huttunen HJ
    J Neurosci Methods; 2013 Jan; 212(2):276-82. PubMed ID: 23124090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics: a new cosset for neurobiology.
    Wang J; Ren L; Li L; Liu W; Zhou J; Yu W; Tong D; Chen S
    Lab Chip; 2009 Mar; 9(5):644-52. PubMed ID: 19224012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporally controlled and multifactor involved assay of neuronal compartment regeneration after chemical injury in an integrated microfluidics.
    Li L; Ren L; Liu W; Wang JC; Wang Y; Tu Q; Xu J; Liu R; Zhang Y; Yuan MS; Li T; Wang J
    Anal Chem; 2012 Aug; 84(15):6444-53. PubMed ID: 22793989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic technologies in cell isolation and analysis for biomedical applications.
    Wu J; Chen Q; Lin JM
    Analyst; 2017 Jan; 142(3):421-441. PubMed ID: 27900377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low density cell culture of locust neurons in closed-channel microfluidic devices.
    Göbbels K; Thiebes AL; van Ooyen A; Schnakenberg U; Bräunig P
    J Insect Physiol; 2010 Aug; 56(8):1003-9. PubMed ID: 20566412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic platforms for single-cell analysis.
    Zare RN; Kim S
    Annu Rev Biomed Eng; 2010 Aug; 12():187-201. PubMed ID: 20433347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment.
    Blake AJ; Pearce TM; Rao NS; Johnson SM; Williams JC
    Lab Chip; 2007 Jul; 7(7):842-9. PubMed ID: 17594002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics.
    Pantoja R; Nagarah JM; Starace DM; Melosh NA; Blunck R; Bezanilla F; Heath JR
    Biosens Bioelectron; 2004 Oct; 20(3):509-17. PubMed ID: 15494233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open-access microfluidic patch-clamp array with raised lateral cell trapping sites.
    Lau AY; Hung PJ; Wu AR; Lee LP
    Lab Chip; 2006 Dec; 6(12):1510-5. PubMed ID: 17203154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control and automation of multilayered integrated microfluidic device fabrication.
    Kipper S; Frolov L; Guy O; Pellach M; Glick Y; Malichi A; Knisbacher BA; Barbiro-Michaely E; Avrahami D; Yavets-Chen Y; Levanon EY; Gerber D
    Lab Chip; 2017 Jan; 17(3):557-566. PubMed ID: 28102868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compartmentalized Microfluidic Platforms: The Unrivaled Breakthrough of In Vitro Tools for Neurobiological Research.
    Neto E; Leitão L; Sousa DM; Alves CJ; Alencastre IS; Aguiar P; Lamghari M
    J Neurosci; 2016 Nov; 36(46):11573-11584. PubMed ID: 27852766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium.
    Vollmer AP; Probstein RF; Gilbert R; Thorsen T
    Lab Chip; 2005 Oct; 5(10):1059-66. PubMed ID: 16175261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007-2017).
    Alam MK; Koomson E; Zou H; Yi C; Li CW; Xu T; Yang M
    Anal Chim Acta; 2018 Dec; 1044():29-65. PubMed ID: 30442405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of microfluidic systems in poly(dimethylsiloxane).
    McDonald JC; Duffy DC; Anderson JR; Chiu DT; Wu H; Schueller OJ; Whitesides GM
    Electrophoresis; 2000 Jan; 21(1):27-40. PubMed ID: 10634468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform.
    Hallfors N; Khan A; Dickey MD; Taylor AM
    Lab Chip; 2013 Feb; 13(4):522-6. PubMed ID: 23232866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The analytical approach to polydimethylsiloxane microfluidic technology and its biological applications.
    Kartalov EP; Anderson WF; Scherer A
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2265-77. PubMed ID: 17037833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.