These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17341686)

  • 1. Eurythermalism and the temperature dependence of enzyme activity.
    Lee CK; Daniel RM; Shepherd C; Saul D; Cary SC; Danson MJ; Eisenthal R; Peterson ME
    FASEB J; 2007 Jun; 21(8):1934-41. PubMed ID: 17341686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dependence of enzyme activity on temperature: determination and validation of parameters.
    Peterson ME; Daniel RM; Danson MJ; Eisenthal R
    Biochem J; 2007 Mar; 402(2):331-7. PubMed ID: 17092210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New parameters controlling the effect of temperature on enzyme activity.
    Daniel RM; Danson MJ; Eisenthal R; Lee CK; Peterson ME
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1543-6. PubMed ID: 18031263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of enzyme thermal parameters for rational enzyme engineering and environmental/evolutionary studies.
    Lee CK; Monk CR; Daniel RM
    Methods Mol Biol; 2013; 996():219-30. PubMed ID: 23504427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular basis of the effect of temperature on enzyme activity.
    Daniel RM; Peterson ME; Danson MJ; Price NC; Kelly SM; Monk CR; Weinberg CS; Oudshoorn ML; Lee CK
    Biochem J; 2009 Dec; 425(2):353-60. PubMed ID: 19849667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new understanding of how temperature affects the catalytic activity of enzymes.
    Daniel RM; Danson MJ
    Trends Biochem Sci; 2010 Oct; 35(10):584-91. PubMed ID: 20554446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic analysis of catalysis by the dihydroorotases from hamster and Bacillus caldolyticus, as compared with the uncatalyzed reaction.
    Huang DT; Kaplan J; Menz RI; Katis VL; Wake RG; Zhao F; Wolfenden R; Christopherson RI
    Biochemistry; 2006 Jul; 45(27):8275-83. PubMed ID: 16819826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymic approach to eurythermalism of Alvinella pompejana and its episymbionts.
    Lee CK; Cary SC; Murray AE; Daniel RM
    Appl Environ Microbiol; 2008 Feb; 74(3):774-82. PubMed ID: 18083873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new intrinsic thermal parameter for enzymes reveals true temperature optima.
    Peterson ME; Eisenthal R; Danson MJ; Spence A; Daniel RM
    J Biol Chem; 2004 May; 279(20):20717-22. PubMed ID: 14973131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature as a selective factor in protein evolution: the adaptational strategy of "compromise".
    Somero GN
    J Exp Zool; 1975 Oct; 194(1):175-88. PubMed ID: 1104753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of cold adaptation.
    D'Amico S; Claverie P; Collins T; Georlette D; Gratia E; Hoyoux A; Meuwis MA; Feller G; Gerday C
    Philos Trans R Soc Lond B Biol Sci; 2002 Jul; 357(1423):917-25. PubMed ID: 12171655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The universality of enzymatic rate-temperature dependency.
    Elias M; Wieczorek G; Rosenne S; Tawfik DS
    Trends Biochem Sci; 2014 Jan; 39(1):1-7. PubMed ID: 24315123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of temperature on enzyme activity: new insights and their implications.
    Daniel RM; Danson MJ; Eisenthal R; Lee CK; Peterson ME
    Extremophiles; 2008 Jan; 12(1):51-9. PubMed ID: 17849082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermal behaviour of enzyme activity: implications for biotechnology.
    Eisenthal R; Peterson ME; Daniel RM; Danson MJ
    Trends Biotechnol; 2006 Jul; 24(7):289-92. PubMed ID: 16759724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility.
    Lonhienne T; Gerday C; Feller G
    Biochim Biophys Acta; 2000 Nov; 1543(1):1-10. PubMed ID: 11087936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Temperature Dependence of Enzyme-Catalyzed Rates.
    Arcus VL; Prentice EJ; Hobbs JK; Mulholland AJ; Van der Kamp MW; Pudney CR; Parker EJ; Schipper LA
    Biochemistry; 2016 Mar; 55(12):1681-8. PubMed ID: 26881922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha-synuclein aggregation variable temperature and variable pH kinetic data: a re-analysis using the Finke-Watzky 2-step model of nucleation and autocatalytic growth.
    Morris AM; Finke RG
    Biophys Chem; 2009 Mar; 140(1-3):9-15. PubMed ID: 19101068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural adaptation to low temperatures--analysis of the subunit interface of oligomeric psychrophilic enzymes.
    Tronelli D; Maugini E; Bossa F; Pascarella S
    FEBS J; 2007 Sep; 274(17):4595-608. PubMed ID: 17697122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.