BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 17342210)

  • 1. TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep.
    Huber R; Esser SK; Ferrarelli F; Massimini M; Peterson MJ; Tononi G
    PLoS One; 2007 Mar; 2(3):e276. PubMed ID: 17342210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep.
    Huber R; Määttä S; Esser SK; Sarasso S; Ferrarelli F; Watson A; Ferreri F; Peterson MJ; Tononi G
    J Neurosci; 2008 Jul; 28(31):7911-8. PubMed ID: 18667623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical plasticity induced by transcranial magnetic stimulation during wakefulness affects electroencephalogram activity during sleep.
    De Gennaro L; Fratello F; Marzano C; Moroni F; Curcio G; Tempesta D; Pellicciari MC; Pirulli C; Ferrara M; Rossini PM
    PLoS One; 2008 Jun; 3(6):e2483. PubMed ID: 18575583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.
    Rodriguez AV; Funk CM; Vyazovskiy VV; Nir Y; Tononi G; Cirelli C
    J Neurosci; 2016 Dec; 36(49):12436-12447. PubMed ID: 27927960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity.
    Huber R; Ghilardi MF; Massimini M; Ferrarelli F; Riedner BA; Peterson MJ; Tononi G
    Nat Neurosci; 2006 Sep; 9(9):1169-76. PubMed ID: 16936722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat.
    Hanlon EC; Faraguna U; Vyazovskiy VV; Tononi G; Cirelli C
    Sleep; 2009 Jun; 32(6):719-29. PubMed ID: 19544747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for differential human slow-wave activity regulation across the brain.
    Zavada A; Strijkstra AM; Boerema AS; Daan S; Beersma DG
    J Sleep Res; 2009 Mar; 18(1):3-10. PubMed ID: 19021858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cortical topography of local sleep.
    Murphy M; Huber R; Esser S; Riedner BA; Massimini M; Ferrarelli F; Ghilardi MF; Tononi G
    Curr Top Med Chem; 2011; 11(19):2438-46. PubMed ID: 21906021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation.
    Bergmann TO; Mölle M; Schmidt MA; Lindner C; Marshall L; Born J; Siebner HR
    J Neurosci; 2012 Jan; 32(1):243-53. PubMed ID: 22219286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locus ceruleus control of slow-wave homeostasis.
    Cirelli C; Huber R; Gopalakrishnan A; Southard TL; Tononi G
    J Neurosci; 2005 May; 25(18):4503-11. PubMed ID: 15872097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triggering sleep slow waves by transcranial magnetic stimulation.
    Massimini M; Ferrarelli F; Esser SK; Riedner BA; Huber R; Murphy M; Peterson MJ; Tononi G
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8496-501. PubMed ID: 17483481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blindfolding during wakefulness causes decrease in sleep slow wave activity.
    Korf EM; Mölle M; Born J; Ngo HV
    Physiol Rep; 2017 Apr; 5(7):. PubMed ID: 28408638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans.
    Riedner BA; Vyazovskiy VV; Huber R; Massimini M; Esser S; Murphy M; Tononi G
    Sleep; 2007 Dec; 30(12):1643-57. PubMed ID: 18246974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep orchestrates indices of local plasticity and global network stability in the human cortex.
    Maier JG; Kuhn M; Mainberger F; Nachtsheim K; Guo S; Bucsenez U; Feige B; Mikutta C; Spiegelhalder K; Klöppel S; Normann C; Riemann D; Nissen C
    Sleep; 2019 Apr; 42(4):. PubMed ID: 30590809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local experience-dependent changes in the wake EEG after prolonged wakefulness.
    Hung CS; Sarasso S; Ferrarelli F; Riedner B; Ghilardi MF; Cirelli C; Tononi G
    Sleep; 2013 Jan; 36(1):59-72. PubMed ID: 23288972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness.
    Ferrarelli F; Massimini M; Sarasso S; Casali A; Riedner BA; Angelini G; Tononi G; Pearce RA
    Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2681-6. PubMed ID: 20133802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves.
    Esser SK; Hill SL; Tononi G
    Sleep; 2007 Dec; 30(12):1617-30. PubMed ID: 18246972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study.
    Kurth S; Ringli M; Geiger A; LeBourgeois M; Jenni OG; Huber R
    J Neurosci; 2010 Oct; 30(40):13211-9. PubMed ID: 20926647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical and subcortical EEG in relation to sleep-wake behavior in mammalian species.
    Lancel M
    Neuropsychobiology; 1993; 28(3):154-9. PubMed ID: 8278030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.