These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17342491)

  • 21. Selective attention in an insect auditory neuron.
    Pollack GS
    J Neurosci; 1988 Jul; 8(7):2635-9. PubMed ID: 3249249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sound processing in the cricket brain: evidence for a pulse duration filter.
    Zhang X; Hedwig B
    J Neurophysiol; 2023 Oct; 130(4):953-966. PubMed ID: 37701942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats.
    Fullard JH; Ratcliffe JM; Guignion C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jul; 191(7):605-18. PubMed ID: 15886992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensory cues for sound localization in the cricket Teleogryllus oceanicus: interaural difference in response strength versus interaural latency difference.
    Pollack GS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):143-51. PubMed ID: 12607043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal and directional processing by an identified interneuron, ON1, compared in cricket species that sing with different tempos.
    Tunstall DN; Pollack GS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Apr; 191(4):363-72. PubMed ID: 15668779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corollary discharge inhibition and audition in the stridulating cricket.
    Poulet JF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Nov; 191(11):979-86. PubMed ID: 16249882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of adaptation on neural coding by primary sensory interneurons in the cricket cercal system.
    Clague H; Theunissen F; Miller JP
    J Neurophysiol; 1997 Jan; 77(1):207-20. PubMed ID: 9120562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differences in evoked potentials during the active processing of sound location and motion.
    Richter N; Schröger E; Rübsamen R
    Neuropsychologia; 2013 Jun; 51(7):1204-14. PubMed ID: 23499852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal coding by populations of auditory receptor neurons.
    Sabourin P; Pollack GS
    J Neurophysiol; 2010 Mar; 103(3):1614-21. PubMed ID: 20071632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synaptic transmission of chaotic spike trains between primary afferent fiber and spinal dorsal horn neuron in the rat.
    Wan YH; Jian Z; Wen ZH; Wang YY; Han S; Duan YB; Xing JL; Zhu JL; Hu SJ
    Neuroscience; 2004; 125(4):1051-60. PubMed ID: 15120864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensory habituation of auditory receptor neurons: implications for sound localization.
    Givois V; Pollack GS
    J Exp Biol; 2000 Sep; 203(Pt 17):2529-37. PubMed ID: 10933997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binaural interaction revisited in the cat primary auditory cortex.
    Zhang J; Nakamoto KT; Kitzes LM
    J Neurophysiol; 2004 Jan; 91(1):101-17. PubMed ID: 14507982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron.
    Marsat G; Pollack GS
    J Neurophysiol; 2004 Aug; 92(2):939-48. PubMed ID: 15044517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interval coding. II. Dendrite-dependent mechanisms.
    Doiron B; Oswald AM; Maler L
    J Neurophysiol; 2007 Apr; 97(4):2744-57. PubMed ID: 17409177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.
    Nabatiyan A; Poulet JF; de Polavieja GG; Hedwig B
    J Neurophysiol; 2003 Oct; 90(4):2484-93. PubMed ID: 14534273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphology and physiology of auditory interneurons of the bushcricket Gampsocleis gratiosa.
    Shen JX
    Jpn J Physiol; 1993; 43 Suppl 1():S239-46. PubMed ID: 8271504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons.
    Legéndy CR; Salcman M
    J Neurophysiol; 1985 Apr; 53(4):926-39. PubMed ID: 3998798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cues for sound localization are encoded in multiple aspects of spike trains in the inferior colliculus.
    Chase SM; Young ED
    J Neurophysiol; 2008 Apr; 99(4):1672-82. PubMed ID: 18234986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response to best-frequency tone bursts in the ventral cochlear nucleus is governed by ordered inter-spike interval statistics.
    Wright MC; Winter IM; Forster JJ; Bleeck S
    Hear Res; 2014 Nov; 317():23-32. PubMed ID: 25261771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From stimulus encoding to feature extraction in weakly electric fish.
    Gabbiani F; Metzner W; Wessel R; Koch C
    Nature; 1996 Dec; 384(6609):564-7. PubMed ID: 8955269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.