These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17342491)

  • 41. Sound transmission and directional hearing in field crickets: neurophysiological studies outdoors.
    Kostarakos K; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Sep; 196(9):669-81. PubMed ID: 20652707
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vestibular-evoked extraocular potentials by air-conducted sound: another clinical test for vestibular function.
    Chihara Y; Iwasaki S; Ushio M; Murofushi T
    Clin Neurophysiol; 2007 Dec; 118(12):2745-51. PubMed ID: 17905655
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae).
    Ostrowski TD; Stumpner A
    J Comp Neurol; 2010 Aug; 518(15):3101-16. PubMed ID: 20533362
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selective processing of calling songs by auditory interneurons in the female cricket, Gryllus pennsylvanicus: possible roles in behavior.
    Jeffery J; Navia B; Atkins G; Stout J
    J Exp Zool A Comp Exp Biol; 2005 May; 303(5):377-92. PubMed ID: 15828009
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dendritic initiation and propagation of spikes and spike bursts in a multimodal sensory interneuron: the crustacean parasol cell.
    Mellon D
    J Neurophysiol; 2003 Oct; 90(4):2465-77. PubMed ID: 12789014
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Time-dependent effects of ipsilateral stimulation on contralaterally elicited responses in the rat's central nucleus of the inferior colliculus.
    Zhang H; Kelly JB
    Brain Res; 2009 Dec; 1303():48-60. PubMed ID: 19786000
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Primary cortical representation of sounds by the coordination of action-potential timing.
    deCharms RC; Merzenich MM
    Nature; 1996 Jun; 381(6583):610-3. PubMed ID: 8637597
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A corollary discharge maintains auditory sensitivity during sound production.
    Poulet JF; Hedwig B
    Nature; 2002 Aug; 418(6900):872-6. PubMed ID: 12192409
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distributed coding of sound locations in the auditory cortex.
    Stecker GC; Middlebrooks JC
    Biol Cybern; 2003 Nov; 89(5):341-9. PubMed ID: 14669014
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Subthreshold sodium current underlies essential functional specializations at primary auditory afferents.
    Curti S; Gómez L; Budelli R; Pereda AE
    J Neurophysiol; 2008 Apr; 99(4):1683-99. PubMed ID: 18234982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Information encoding and computation with spikes and bursts.
    Kepecs A; Lisman J
    Network; 2003 Feb; 14(1):103-18. PubMed ID: 12613553
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Right hemispheric laterality of human 40 Hz auditory steady-state responses.
    Ross B; Herdman AT; Pantev C
    Cereb Cortex; 2005 Dec; 15(12):2029-39. PubMed ID: 15772375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents.
    Hennig RM
    J Comp Physiol A; 1988 May; 163(1):135-43. PubMed ID: 3385665
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contralateral inhibition as a sensory bias: the neural basis for a female preference in a synchronously calling bushcricket, Mecopoda elongata.
    Römer H; Hedwig B; Ott SR
    Eur J Neurosci; 2002 May; 15(10):1655-62. PubMed ID: 12059973
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temporal integration vs. parallel processing: coping with the variability of neuronal messages in directional hearing of insects.
    Ronacher B; Krahe R
    Eur J Neurosci; 2000 Jun; 12(6):2147-56. PubMed ID: 10886354
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The cricket cercal system implements delay-line processing.
    Mulder-Rosi J; Cummins GI; Miller JP
    J Neurophysiol; 2010 Apr; 103(4):1823-32. PubMed ID: 20107118
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Auditory orientation in crickets: pattern recognition controls reactive steering.
    Poulet JF; Hedwig B
    Proc Natl Acad Sci U S A; 2005 Oct; 102(43):15665-9. PubMed ID: 16227440
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interspike intervals within retinal spike bursts combinatorially encode multiple stimulus features.
    Ishii T; Hosoya T
    PLoS Comput Biol; 2020 Nov; 16(11):e1007726. PubMed ID: 33156853
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Release from bats: genetic distance and sensoribehavioural regression in the Pacific field cricket, Teleogryllus oceanicus.
    Fullard JH; ter Hofstede HM; Ratcliffe JM; Pollack GS; Brigidi GS; Tinghitella RM; Zuk M
    Naturwissenschaften; 2010 Jan; 97(1):53-61. PubMed ID: 19777200
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Out of phase: relevance of the medial septum for directional hearing and phonotaxis in the natural habitat of field crickets.
    Hirtenlehner S; Römer H; Schmidt AK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Feb; 200(2):139-48. PubMed ID: 24281354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.