BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 17342538)

  • 1. Teaching analytical atomic spectroscopy advances in an environmental chemistry class using a project-based laboratory approach: investigation of lead and arsenic distributions in a lead arsenate contaminated apple orchard.
    Amarasiriwardena D
    Anal Bioanal Chem; 2007 May; 388(2):307-14. PubMed ID: 17342538
    [No Abstract]   [Full Text] [Related]  

  • 2. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard.
    Newton K; Amarasiriwardena D; Xing B
    Environ Pollut; 2006 Sep; 143(2):197-205. PubMed ID: 16480799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Legacy lead arsenate soil contamination at childcare centers in the Yakima Valley, Central Washington, USA.
    Durkee J; Bartrem C; Möller G
    Chemosphere; 2017 Feb; 168():1126-1135. PubMed ID: 27823776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic mobility and stabilization in topsoils.
    Tyrovola K; Nikolaidis NP
    Water Res; 2009 Apr; 43(6):1589-96. PubMed ID: 19201440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecotoxicological study of arsenic and lead contaminated soils in former orchards at the Hanford Site, USA.
    Delistraty D; Yokel J
    Environ Toxicol; 2014 Jan; 29(1):10-20. PubMed ID: 21922631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residues of lead and arsenic in crops cultured on old orchard soils.
    Kenyon DJ; Elfving DC; Pakkala IS; Bache CA; Lisk D
    Bull Environ Contam Toxicol; 1979 May; 22(1-2):221-3. PubMed ID: 37951
    [No Abstract]   [Full Text] [Related]  

  • 7. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenate adsorption structures on aluminum oxide and phyllosilicate mineral surfaces in smelter-impacted soils.
    Beaulieu BT; Savage KS
    Environ Sci Technol; 2005 May; 39(10):3571-9. PubMed ID: 15952360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Transformation of different exogenous arsenic forms in soil under aerobic condition].
    He QH; Zeng XB; Li LF; Bai LY
    Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3212-6. PubMed ID: 21443011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal variability of arsenic solid-state speciation in historically lead arsenate contaminated soils.
    Arai Y; Lanzirotti A; Sutton SR; Newville M; Dyer J; Sparks DL
    Environ Sci Technol; 2006 Feb; 40(3):673-9. PubMed ID: 16509302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic and lead residues in carrots from foliar applications of monosodium methanearsonate (MSMA): A comparison between mineral and organic soils, or from soil residues.
    Zandstra BH; De Kryger TA
    Food Addit Contam; 2007 Jan; 24(1):34-42. PubMed ID: 17164215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic fate and bioavailability in two soils contaminated with sodium arsenate pesticide: an incubation study.
    Sarkar D; Datta R
    Bull Environ Contam Toxicol; 2004 Feb; 72(2):240-7. PubMed ID: 15106757
    [No Abstract]   [Full Text] [Related]  

  • 13. Arsenic Speciation and Availability in Orchard Soils Historically Contaminated with Lead Arsenate.
    Gamble AV; Givens AK; Sparks DL
    J Environ Qual; 2018 Jan; 47(1):121-128. PubMed ID: 29415098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chromated copper arsenate structures on adjacent soil arsenic concentrations.
    Patch SC; Scheip K; Brooks B
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):662-5. PubMed ID: 21505794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample.
    Vaxevanidou K; Christou C; Kremmydas GF; Georgakopoulos DG; Papassiopi N
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):282-8. PubMed ID: 25588567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of Arsenic and Lead in Soil with Fruit and Leaves of Apple Trees at Selected Orchards in Michigan.
    Cao LTT; Bourquin LD
    J Food Prot; 2020 Jun; 83(6):935-942. PubMed ID: 32428933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residential arsenic and lead levels in an agricultural community with a history of lead arsenate use.
    Wolz S; Fenske RA; Simcox NJ; Palcisko G; Kissel JC
    Environ Res; 2003 Nov; 93(3):293-300. PubMed ID: 14615240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils.
    Steely S; Amarasiriwardena D; Xing B
    Environ Pollut; 2007 Jul; 148(2):590-8. PubMed ID: 17258851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobility and fractionation of arsenic, chromium and copper in thermally treated soil.
    Nordmark D; Kumpiene J; Andreas L; Lagerkvist A
    Waste Manag Res; 2011 Jan; 29(1):3-12. PubMed ID: 20880937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.