BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17343278)

  • 1. Effect of dermatan sulfate glycosaminoglycans on the quasi-static material properties of the human medial collateral ligament.
    Lujan TJ; Underwood CJ; Henninger HB; Thompson BM; Weiss JA
    J Orthop Res; 2007 Jul; 25(7):894-903. PubMed ID: 17343278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial distribution and orientation of dermatan sulfate in human medial collateral ligament.
    Henninger HB; Maas SA; Underwood CJ; Whitaker RT; Weiss JA
    J Struct Biol; 2007 Apr; 158(1):33-45. PubMed ID: 17150374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastin governs the mechanical response of medial collateral ligament under shear and transverse tensile loading.
    Henninger HB; Valdez WR; Scott SA; Weiss JA
    Acta Biomater; 2015 Oct; 25():304-12. PubMed ID: 26162584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteoglycan metabolism during repair of the ruptured medial collateral ligament in skeletally mature rabbits.
    Plaas AH; Wong-Palms S; Koob T; Hernandez D; Marchuk L; Frank CB
    Arch Biochem Biophys; 2000 Feb; 374(1):35-41. PubMed ID: 10640393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transversely isotropic distribution of sulfated glycosaminoglycans in human medial collateral ligament: a quantitative analysis.
    Henninger HB; Maas SA; Shepherd JH; Joshi S; Weiss JA
    J Struct Biol; 2009 Mar; 165(3):176-83. PubMed ID: 19126431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of elastin digestion on the quasi-static tensile response of medial collateral ligament.
    Henninger HB; Underwood CJ; Romney SJ; Davis GL; Weiss JA
    J Orthop Res; 2013 Aug; 31(8):1226-33. PubMed ID: 23553827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament.
    Lujan TJ; Underwood CJ; Jacobs NT; Weiss JA
    J Appl Physiol (1985); 2009 Feb; 106(2):423-31. PubMed ID: 19074575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomechanical assessment to evaluate breed differences in normal porcine medial collateral ligaments.
    Germscheid NM; Thornton GM; Hart DA; Hildebrand KA
    J Biomech; 2011 Feb; 44(4):725-31. PubMed ID: 21092965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sulfated glycosaminoglycan digestion on the transverse permeability of medial collateral ligament.
    Henninger HB; Underwood CJ; Ateshian GA; Weiss JA
    J Biomech; 2010 Sep; 43(13):2567-73. PubMed ID: 20627251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic loading causes faster rupture and strain rate than static loading in medial collateral ligament at high stress.
    Thornton GM; Schwab TD; Oxland TR
    Clin Biomech (Bristol, Avon); 2007 Oct; 22(8):932-40. PubMed ID: 17602807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament--a functional tissue engineering study in rabbits.
    Musahl V; Abramowitch SD; Gilbert TW; Tsuda E; Wang JH; Badylak SF; Woo SL
    J Orthop Res; 2004 Jan; 22(1):214-20. PubMed ID: 14656683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dermatan sulfate on the indentation and tensile properties of articular cartilage.
    Hall ML; Krawczak DA; Simha NK; Lewis JL
    Osteoarthritis Cartilage; 2009 May; 17(5):655-61. PubMed ID: 19036614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cyclic stretching on the tensile properties of patellar tendon and medial collateral ligament in rat.
    Su WR; Chen HH; Luo ZP
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):911-7. PubMed ID: 18485553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of elastic, viscoelastic and failure tensile material properties of knee ligaments and patellar tendon.
    Ristaniemi A; Stenroth L; Mikkonen S; Korhonen RK
    J Biomech; 2018 Oct; 79():31-38. PubMed ID: 30082085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive compared with tensile loading of medial collateral ligament scar in vitro uniquely influences mRNA levels for aggrecan, collagen type II, and collagenase.
    Majima T; Marchuk LL; Sciore P; Shrive NG; Frank CB; Hart DA
    J Orthop Res; 2000 Jul; 18(4):524-31. PubMed ID: 11052487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft-tissue "flaws" are associated with the material properties of the healing rabbit medial collateral ligament.
    Shrive N; Chimich D; Marchuk L; Wilson J; Brant R; Frank C
    J Orthop Res; 1995 Nov; 13(6):923-9. PubMed ID: 8544030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of material characterizations in frequently used constitutive models of ligaments.
    Wan C; Hao Z; Wen S
    Int J Numer Method Biomed Eng; 2014 Jun; 30(6):605-15. PubMed ID: 24353251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the fatigue behavior of the medial collateral ligament utilizing traditional and novel mechanical variables for the assessment of damage accumulation.
    Zec ML; Thistlethwaite P; Frank CB; Shrive NG
    J Biomech Eng; 2010 Jan; 132(1):011001. PubMed ID: 20524739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.
    Gardiner JC; Weiss JA
    J Orthop Res; 2003 Nov; 21(6):1098-106. PubMed ID: 14554224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading.
    Bonifasi-Lista C; Lake SP; Small MS; Weiss JA
    J Orthop Res; 2005 Jan; 23(1):67-76. PubMed ID: 15607877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.