These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 17343278)
1. Effect of dermatan sulfate glycosaminoglycans on the quasi-static material properties of the human medial collateral ligament. Lujan TJ; Underwood CJ; Henninger HB; Thompson BM; Weiss JA J Orthop Res; 2007 Jul; 25(7):894-903. PubMed ID: 17343278 [TBL] [Abstract][Full Text] [Related]
2. Spatial distribution and orientation of dermatan sulfate in human medial collateral ligament. Henninger HB; Maas SA; Underwood CJ; Whitaker RT; Weiss JA J Struct Biol; 2007 Apr; 158(1):33-45. PubMed ID: 17150374 [TBL] [Abstract][Full Text] [Related]
3. Elastin governs the mechanical response of medial collateral ligament under shear and transverse tensile loading. Henninger HB; Valdez WR; Scott SA; Weiss JA Acta Biomater; 2015 Oct; 25():304-12. PubMed ID: 26162584 [TBL] [Abstract][Full Text] [Related]
4. Proteoglycan metabolism during repair of the ruptured medial collateral ligament in skeletally mature rabbits. Plaas AH; Wong-Palms S; Koob T; Hernandez D; Marchuk L; Frank CB Arch Biochem Biophys; 2000 Feb; 374(1):35-41. PubMed ID: 10640393 [TBL] [Abstract][Full Text] [Related]
5. Transversely isotropic distribution of sulfated glycosaminoglycans in human medial collateral ligament: a quantitative analysis. Henninger HB; Maas SA; Shepherd JH; Joshi S; Weiss JA J Struct Biol; 2009 Mar; 165(3):176-83. PubMed ID: 19126431 [TBL] [Abstract][Full Text] [Related]
6. Effect of elastin digestion on the quasi-static tensile response of medial collateral ligament. Henninger HB; Underwood CJ; Romney SJ; Davis GL; Weiss JA J Orthop Res; 2013 Aug; 31(8):1226-33. PubMed ID: 23553827 [TBL] [Abstract][Full Text] [Related]
7. Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament. Lujan TJ; Underwood CJ; Jacobs NT; Weiss JA J Appl Physiol (1985); 2009 Feb; 106(2):423-31. PubMed ID: 19074575 [TBL] [Abstract][Full Text] [Related]
8. A biomechanical assessment to evaluate breed differences in normal porcine medial collateral ligaments. Germscheid NM; Thornton GM; Hart DA; Hildebrand KA J Biomech; 2011 Feb; 44(4):725-31. PubMed ID: 21092965 [TBL] [Abstract][Full Text] [Related]
9. Effect of sulfated glycosaminoglycan digestion on the transverse permeability of medial collateral ligament. Henninger HB; Underwood CJ; Ateshian GA; Weiss JA J Biomech; 2010 Sep; 43(13):2567-73. PubMed ID: 20627251 [TBL] [Abstract][Full Text] [Related]
10. Cyclic loading causes faster rupture and strain rate than static loading in medial collateral ligament at high stress. Thornton GM; Schwab TD; Oxland TR Clin Biomech (Bristol); 2007 Oct; 22(8):932-40. PubMed ID: 17602807 [TBL] [Abstract][Full Text] [Related]
11. The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament--a functional tissue engineering study in rabbits. Musahl V; Abramowitch SD; Gilbert TW; Tsuda E; Wang JH; Badylak SF; Woo SL J Orthop Res; 2004 Jan; 22(1):214-20. PubMed ID: 14656683 [TBL] [Abstract][Full Text] [Related]
12. Effect of dermatan sulfate on the indentation and tensile properties of articular cartilage. Hall ML; Krawczak DA; Simha NK; Lewis JL Osteoarthritis Cartilage; 2009 May; 17(5):655-61. PubMed ID: 19036614 [TBL] [Abstract][Full Text] [Related]
13. Effect of cyclic stretching on the tensile properties of patellar tendon and medial collateral ligament in rat. Su WR; Chen HH; Luo ZP Clin Biomech (Bristol); 2008 Aug; 23(7):911-7. PubMed ID: 18485553 [TBL] [Abstract][Full Text] [Related]
14. Comparison of elastic, viscoelastic and failure tensile material properties of knee ligaments and patellar tendon. Ristaniemi A; Stenroth L; Mikkonen S; Korhonen RK J Biomech; 2018 Oct; 79():31-38. PubMed ID: 30082085 [TBL] [Abstract][Full Text] [Related]
15. Compressive compared with tensile loading of medial collateral ligament scar in vitro uniquely influences mRNA levels for aggrecan, collagen type II, and collagenase. Majima T; Marchuk LL; Sciore P; Shrive NG; Frank CB; Hart DA J Orthop Res; 2000 Jul; 18(4):524-31. PubMed ID: 11052487 [TBL] [Abstract][Full Text] [Related]
16. Soft-tissue "flaws" are associated with the material properties of the healing rabbit medial collateral ligament. Shrive N; Chimich D; Marchuk L; Wilson J; Brant R; Frank C J Orthop Res; 1995 Nov; 13(6):923-9. PubMed ID: 8544030 [TBL] [Abstract][Full Text] [Related]
17. A comparison of material characterizations in frequently used constitutive models of ligaments. Wan C; Hao Z; Wen S Int J Numer Method Biomed Eng; 2014 Jun; 30(6):605-15. PubMed ID: 24353251 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the fatigue behavior of the medial collateral ligament utilizing traditional and novel mechanical variables for the assessment of damage accumulation. Zec ML; Thistlethwaite P; Frank CB; Shrive NG J Biomech Eng; 2010 Jan; 132(1):011001. PubMed ID: 20524739 [TBL] [Abstract][Full Text] [Related]
19. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. Gardiner JC; Weiss JA J Orthop Res; 2003 Nov; 21(6):1098-106. PubMed ID: 14554224 [TBL] [Abstract][Full Text] [Related]
20. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. Bonifasi-Lista C; Lake SP; Small MS; Weiss JA J Orthop Res; 2005 Jan; 23(1):67-76. PubMed ID: 15607877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]