These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 17343459)

  • 1. Novel quantum mechanical/molecular mechanical method combined with the theory of energy representation: free energy calculation for the Beckmann rearrangement promoted by proton transfers in the supercritical water.
    Takahashi H; Tanabe K; Aketa M; Kishi R; Furukawa S; Nakano M
    J Chem Phys; 2007 Feb; 126(8):084508. PubMed ID: 17343459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An application of the novel quantum mechanical/molecular mechanical method combined with the theory of energy representation: An ionic dissociation of a water molecule in the supercritical water.
    Takahashi H; Satou W; Hori T; Nitta T
    J Chem Phys; 2005 Jan; 122(4):44504. PubMed ID: 15740264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computation of the free energy change associated with one-electron reduction of coenzyme immersed in water: a novel approach within the framework of the quantum mechanical/molecular mechanical method combined with the theory of energy representation.
    Takahashi H; Ohno H; Kishi R; Nakano M; Matubayasi N
    J Chem Phys; 2008 Nov; 129(20):205103. PubMed ID: 19045881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantum chemical approach to the free energy calculations in condensed systems: the QM/MM method combined with the theory of energy representation.
    Takahashi H; Matubayasi N; Nakahara M; Nitta T
    J Chem Phys; 2004 Sep; 121(9):3989-99. PubMed ID: 15332945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-energy analysis of the electron-density fluctuation in the quantum-mechanical/molecular-mechanical simulation combined with the theory of energy representation.
    Matubayasi N; Takahashi H
    J Chem Phys; 2012 Jan; 136(4):044505. PubMed ID: 22299889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple and exact approach to the electronic polarization effect on the solvation free energy: formulation for quantum-mechanical/molecular-mechanical system and its applications to aqueous solutions.
    Takahashi H; Omi A; Morita A; Matubayasi N
    J Chem Phys; 2012 Jun; 136(21):214503. PubMed ID: 22697554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the dominant hydration structures among the ionic species in aqueous solution: novel quantum mechanics/molecular mechanics simulations combined with the theory of energy representation.
    Takahashi H; Ohno H; Yamauchi T; Kishi R; Furukawa S; Nakano M; Matubayasi N
    J Chem Phys; 2008 Feb; 128(6):064507. PubMed ID: 18282056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study on the relative acidity of acetic acid by the QM/MM method combined with the theory of energy representation.
    Hori T; Takahashi H; Furukawa S; Nakano M; Yang W
    J Phys Chem B; 2007 Jan; 111(3):581-8. PubMed ID: 17228916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing supercritical water with the n-pi* transition of acetone: a Monte Carlo/quantum mechanics study.
    Fonseca TL; Coutinho K; Canuto S
    J Chem Phys; 2007 Jan; 126(3):034508. PubMed ID: 17249885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic origin of proton affinity to the air/water interface.
    Takahashi H; Maruyama K; Karino Y; Morita A; Nakano M; Jungwirth P; Matubayasi N
    J Phys Chem B; 2011 Apr; 115(16):4745-51. PubMed ID: 21462940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations.
    Dieterich JM; Werner HJ; Mata RA; Metz S; Thiel W
    J Chem Phys; 2010 Jan; 132(3):035101. PubMed ID: 20095751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping.
    Xiang Y; Warshel A
    J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cope elimination: elucidation of solvent effects from QM/MM simulations.
    Acevedo O; Jorgensen WL
    J Am Chem Soc; 2006 May; 128(18):6141-6. PubMed ID: 16669683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent effects in chemical processes. water-assisted proton transfer reaction of pterin in aqueous environment.
    Jaramillo P; Coutinho K; Canuto S
    J Phys Chem A; 2009 Nov; 113(45):12485-95. PubMed ID: 19754044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of solvation free energy from quantum mechanical charge density and continuum dielectric theory.
    Wang M; Wong CF
    J Phys Chem A; 2006 Apr; 110(14):4873-9. PubMed ID: 16599457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cluster model for the ionic product of water: accuracy and limitations of common density functional methods.
    Svozil D; Jungwirth P
    J Phys Chem A; 2006 Jul; 110(29):9194-9. PubMed ID: 16854033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.