These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 17343469)
1. Mesoscopic restructuring and mass transport of metal atoms during reduction of the Ag(111)-p(4x4)-O surface with CO. Klust A; Madix RJ J Chem Phys; 2007 Feb; 126(8):084707. PubMed ID: 17343469 [TBL] [Abstract][Full Text] [Related]
2. Surface reorganization accompanying the formation of sulfite and sulfate by reaction of sulfur dioxide with oxygen on Ag111. Alemozafar AR; Madix RJ J Chem Phys; 2005 Jun; 122(21):214718. PubMed ID: 15974773 [TBL] [Abstract][Full Text] [Related]
3. Co-adsorption of CO onto a Ag-modified Pt(111)--restructuring of a Ag UPD layer monitored by EC-STM. Domke KF; Xiao XY; Baltruschat H Phys Chem Chem Phys; 2008 Mar; 10(11):1555-61. PubMed ID: 18327311 [TBL] [Abstract][Full Text] [Related]
4. Mesoscopic chiral reshaping of the Ag(110) surface induced by the organic molecule PVBA. Pascual JI; Barth JV; Ceballos G; Trimarchi G; De Vita A; Kern K; Rust HP J Chem Phys; 2004 Jun; 120(24):11367-70. PubMed ID: 15268168 [TBL] [Abstract][Full Text] [Related]
5. In situ observation of CO oxidation on Ag110(2 x 1)-O by scanning tunneling microscopy: structural fluctuation and catalytic activity. Nakagoe O; Watanabe K; Takagi N; Matsumoto Y J Phys Chem B; 2005 Aug; 109(30):14536-43. PubMed ID: 16852832 [TBL] [Abstract][Full Text] [Related]
6. Kinetic hindrance during the surface oxidation of Cu(100)-c(10x2)-Ag. Lahtonen K; Lampimäki M; Hirsimäki M; Valden M J Chem Phys; 2008 Nov; 129(19):194707. PubMed ID: 19026081 [TBL] [Abstract][Full Text] [Related]
7. Imaging the surface and the interface atoms of an oxide film on Ag111 by scanning tunneling microscopy: experiment and theory. Carlisle CI; King DA; Bocquet M; Cerda J; Sautet P Phys Rev Lett; 2000 Apr; 84(17):3899-902. PubMed ID: 11019234 [TBL] [Abstract][Full Text] [Related]
8. Accelerated coarsening of Ag adatom islands on Ag(111) due to trace amounts of S: mass-transport mediated by Ag-S complexes. Shen M; Liu DJ; Jenks CJ; Thiel PA; Evans JW J Chem Phys; 2009 Mar; 130(9):094701. PubMed ID: 19275412 [TBL] [Abstract][Full Text] [Related]
9. High-pressure STM of the interaction of oxygen with Ag(111). Reichelt R; Günther S; Rössler M; Wintterlin J; Kubias B; Jakobi B; Schlögl R Phys Chem Chem Phys; 2007 Jul; 9(27):3590-9. PubMed ID: 17612724 [TBL] [Abstract][Full Text] [Related]
11. Real-time observation of surface reactivity and mobility with scanning tunneling microscopy. Guo XC; Madix RJ Acc Chem Res; 2003 Jul; 36(7):471-80. PubMed ID: 12859208 [TBL] [Abstract][Full Text] [Related]
12. Stabilization of surface reaction intermediates by added metal atoms on metal surfaces of low free energy. Zhou L; Gao W; Klust A; Madix RJ J Chem Phys; 2008 Feb; 128(5):054703. PubMed ID: 18266458 [TBL] [Abstract][Full Text] [Related]
13. Low energy electron diffraction and low energy electron microscopy microspot I/V analysis of the (4 x 4)O structure on Ag(111): surface oxide or reconstruction? Reichelt R; Günther S; Wintterlin J; Moritz W; Aballe L; Mentes TO J Chem Phys; 2007 Oct; 127(13):134706. PubMed ID: 17919042 [TBL] [Abstract][Full Text] [Related]
14. Visualization of atomic processes on ruthenium dioxide using scanning tunneling microscopy. Over H; Knapp M; Lundgren E; Seitsonen AP; Schmid M; Varga P Chemphyschem; 2004 Feb; 5(2):167-74. PubMed ID: 15038276 [TBL] [Abstract][Full Text] [Related]
15. Interaction of scanning tunneling microscopy tip with mesoscopic islands at the atomic-scale. Huang RZ; Stepanyuk VS; Kirschner J J Phys Condens Matter; 2006 May; 18(17):L217-23. PubMed ID: 21690764 [TBL] [Abstract][Full Text] [Related]
16. Oxygen adsorption-induced nanostructures and island formation on Cu{100}: Bridging the gap between the formation of surface confined oxygen chemisorption layer and oxide formation. Lahtonen K; Hirsimäki M; Lampimäki M; Valden M J Chem Phys; 2008 Sep; 129(12):124703. PubMed ID: 19045044 [TBL] [Abstract][Full Text] [Related]
17. Observation of all the intermediate steps of a chemical reaction on an oxide surface by scanning tunneling microscopy. Matthiesen J; Wendt S; Hansen JØ; Madsen GK; Lira E; Galliker P; Vestergaard EK; Schaub R; Laegsgaard E; Hammer B; Besenbacher F ACS Nano; 2009 Mar; 3(3):517-26. PubMed ID: 19309169 [TBL] [Abstract][Full Text] [Related]
18. Infrared spectroscopy of Cu+(H2O)(n) and Ag+(H2O)(n): coordination and solvation of noble-metal ions. Iino T; Ohashi K; Inoue K; Judai K; Nishi N; Sekiya H J Chem Phys; 2007 May; 126(19):194302. PubMed ID: 17523799 [TBL] [Abstract][Full Text] [Related]
19. Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms. Camellone MF; Fabris S J Am Chem Soc; 2009 Aug; 131(30):10473-83. PubMed ID: 19722624 [TBL] [Abstract][Full Text] [Related]
20. DFT analysis of the reaction paths of formaldehyde decomposition on silver. Montoya A; Haynes BS J Phys Chem A; 2009 Jul; 113(28):8125-31. PubMed ID: 19586058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]