These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17343478)

  • 1. Determination of fluence rate and temperature distributions in the rat brain; implications for photodynamic therapy.
    Angell-Petersen E; Hirschberg H; Madsen SJ
    J Biomed Opt; 2007; 12(1):014003. PubMed ID: 17343478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of light beam size on fluence distribution and depth of necrosis in superficially applied photodynamic therapy of normal rat brain.
    Chen Q; Wilson BC; Dereski MO; Patterson MS; Chopp M; Hetzel FW
    Photochem Photobiol; 1992 Sep; 56(3):379-84. PubMed ID: 1438573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulations for EndoBronchial Photodynamic Therapy: the influence of variations in optical and geometrical properties and of realistic and eccentric light sources.
    Murrer LH; Marijnissen HP; Star WM
    Lasers Surg Med; 1998; 22(4):193-206. PubMed ID: 9603280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in in vivo optical properties and light distributions in normal canine prostate during photodynamic therapy.
    Chen Q; Wilson BC; Shetty SD; Patterson MS; Cerny JC; Hetzel FW
    Radiat Res; 1997 Jan; 147(1):86-91. PubMed ID: 8989374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ex vivo light dosimetry and Monte Carlo simulations for endobronchial photodynamic therapy.
    Murrer LH; Marijnissen JP; Star WM
    Phys Med Biol; 1995 Nov; 40(11):1807-17. PubMed ID: 8587933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of light propagation models to determine the optical properties of tissue from interstitial frequency domain fluence measurements.
    Xu H; Farrell TJ; Patterson MS
    J Biomed Opt; 2006; 11(4):041104. PubMed ID: 16965132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating sphere effect in whole-bladder wall photodynamic therapy: III. Fluence multiplication, optical penetration and light distribution with an eccentric source for human bladder optical properties.
    van Staveren HJ; Keijzer M; Keesmaat T; Jansen H; Kirkel WJ; Beek JF; Star WM
    Phys Med Biol; 1996 Apr; 41(4):579-90. PubMed ID: 8730658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating sphere effect in whole bladder wall photodynamic therapy: I. 532 nm versus 630 nm optical irradiation.
    van Staveren HJ; Beek JF; Ramaekers JW; Keijzer M; Star WM
    Phys Med Biol; 1994 Jun; 39(6):947-59. PubMed ID: 15551572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma.
    Lilge L; Molpus K; Hasan T; Wilson BC
    Photochem Photobiol; 1998 Sep; 68(3):281-8. PubMed ID: 9747583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating sphere effect in whole-bladder-wall photodynamic therapy: II. The influence of urine at 458, 488, 514 and 630 nm optical irradiation.
    van Staveren HJ; Beek JF; Keijzer M; Star WM
    Phys Med Biol; 1995 Aug; 40(8):1307-15. PubMed ID: 7480114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulations of the use of isotropic light dosimetry probes to monitor energy fluence in biological tissues.
    de Jodet ML
    Phys Med Biol; 1999 Dec; 44(12):3027-37. PubMed ID: 10616152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light diffusion through a turbid parallelepiped.
    Kienle A
    J Opt Soc Am A Opt Image Sci Vis; 2005 Sep; 22(9):1883-8. PubMed ID: 16211815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of isotropic light dosimetry probes based on scattering bulbs in turbid media.
    Marijnissen JP; Star WM
    Phys Med Biol; 2002 Jun; 47(12):2049-58. PubMed ID: 12118600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo optical properties of normal canine prostate at 732 nm using motexafin lutetium-mediated photodynamic therapy.
    Zhu TC; Hahn SM; Kapatkin AS; Dimofte A; Rodriguez CE; Vulcan TG; Glatstein E; Hsi RA
    Photochem Photobiol; 2003 Jan; 77(1):81-8. PubMed ID: 12856887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation of light fluence in tissue in a cylindrical diffusing fibre geometry.
    Farina B; Saponaro S; Pignoli E; Tomatis S; Marchesini R
    Phys Med Biol; 1999 Jan; 44(1):1-11. PubMed ID: 10071871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical dosimetry for interstitial photodynamic therapy.
    Arnfield MR; Tulip J; Chetner M; McPhee MS
    Med Phys; 1989; 16(4):602-8. PubMed ID: 2770633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of in situ light dosimetry for photodynamic therapy of oral cavity tumors.
    Tan IB; Oppelaar H; Ruevekamp MC; Veenhuizen RB; Timmers A; Stewart FA
    Head Neck; 1999 Aug; 21(5):434-41. PubMed ID: 10402524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interstitial 5-ALA photodynamic therapy and glioblastoma: Preclinical model development and preliminary results.
    Tetard MC; Vermandel M; Leroy HA; Leroux B; Maurage CA; Lejeune JP; Mordon S; Reyns N
    Photodiagnosis Photodyn Ther; 2016 Mar; 13():218-224. PubMed ID: 26213327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing deep tissues with laser-induced thermotherapy using near-infrared light.
    Lopes A; Gomes R; CastiƱeras M; Coelho JMP; Santos JP; Vieira P
    Lasers Med Sci; 2020 Feb; 35(1):43-49. PubMed ID: 31098938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX.
    Beck TJ; Kreth FW; Beyer W; Mehrkens JH; Obermeier A; Stepp H; Stummer W; Baumgartner R
    Lasers Surg Med; 2007 Jun; 39(5):386-93. PubMed ID: 17565715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.