BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17343479)

  • 1. Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.
    Alimova A; Katz A; Sriramoju V; Budansky Y; Bykov AA; Zeylikovich R; Alfano RR
    J Biomed Opt; 2007; 12(1):014004. PubMed ID: 17343479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan as the fingerprint for distinguishing aggressiveness among breast cancer cell lines using native fluorescence spectroscopy.
    Zhang L; Pu Y; Xue J; Pratavieira S; Xu B; Achilefu S; Alfano RR
    J Biomed Opt; 2014 Mar; 19(3):37005. PubMed ID: 24676384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model based and empirical spectral analysis for the diagnosis of breast cancer.
    Zhu C; Breslin TM; Harter J; Ramanujam N
    Opt Express; 2008 Sep; 16(19):14961-78. PubMed ID: 18795033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy.
    Volynskaya Z; Haka AS; Bechtel KL; Fitzmaurice M; Shenk R; Wang N; Nazemi J; Dasari RR; Feld MS
    J Biomed Opt; 2008; 13(2):024012. PubMed ID: 18465975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003).
    Palmer GM; Zhu C; Breslin TM; Xu F; Gilchrist KW; Ramanujam N
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1233-42. PubMed ID: 14619993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues.
    Gupta S; Nair MS; Pradhan A; Biswal NC; Agarwal N; Agarwal A; Panigrahi PK
    J Biomed Opt; 2005; 10(5):054012. PubMed ID: 16292972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity.
    Francisco AL; Correr WR; Azevedo LH; Kern VG; Pinto CA; Kowalski LP; Kurachi C
    Photodiagnosis Photodyn Ther; 2014 Jun; 11(2):82-90. PubMed ID: 24704941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of autofluorescence, diffuse reflectance, and Raman spectroscopy for breast tissue discrimination.
    Majumder SK; Keller MD; Boulos FI; Kelley MC; Mahadevan-Jansen A
    J Biomed Opt; 2008; 13(5):054009. PubMed ID: 19021389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence.
    Gharekhan AH; Arora S; Mayya KB; Panigrahi PK; Sureshkumar MB; Pradhan A
    J Biomed Opt; 2008; 13(5):054063. PubMed ID: 19021441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    J Biomed Opt; 2008; 13(3):034015. PubMed ID: 18601560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native fluorescence spectroscopy reveals spectral differences among prostate cancer cell lines with different risk levels.
    Pu Y; Xue J; Wang W; Xu B; Gu Y; Tang R; Ackerstaff E; Koutcher JA; Achilefu S; Alfano RR
    J Biomed Opt; 2013 Aug; 18(8):87002. PubMed ID: 23912761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved room temperature tryptophan phosphorescence in proteins.
    Schauerte JA; Steel DG; Gafni A
    Methods Enzymol; 1997; 278():49-71. PubMed ID: 9170309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR-spectroscopy at 1.5 tesla and 3 tesla. Useful? A systematic review and meta-analysis.
    Baltzer PA; Dietzel M; Kaiser WA
    Eur J Radiol; 2012 Sep; 81 Suppl 1():S6-9. PubMed ID: 23083604
    [No Abstract]   [Full Text] [Related]  

  • 14. Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues.
    Breslin TM; Xu F; Palmer GM; Zhu C; Gilchrist KW; Ramanujam N
    Ann Surg Oncol; 2004 Jan; 11(1):65-70. PubMed ID: 14699036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence.
    Uehlinger P; Gabrecht T; Glanzmann T; Ballini JP; Radu A; Andrejevic S; Monnier P; Wagnières G
    J Biomed Opt; 2009; 14(2):024011. PubMed ID: 19405741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of NADH concentration in normal and malignant human tissues from breast and oral cavity.
    Uppal A; Gupta PK
    Biotechnol Appl Biochem; 2003 Feb; 37(Pt 1):45-50. PubMed ID: 12578551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan phosphorescence studies of the D-galactose/D-glucose-binding protein from Escherichia coli provide a molecular portrait with structural and dynamics features of the protein.
    D'Auria S; Varriale A; Gonnelli M; Saviano M; Staiano M; Rossi M; Strambini GB
    J Proteome Res; 2007 Apr; 6(4):1306-12. PubMed ID: 17328569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native fluorescence spectroscopy with selective excitation wavelength.
    Pu Y; Wang W; Tang G; Alfano RR
    J Biomed Opt; 2010; 15(4):047008. PubMed ID: 20799839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands.
    Subhash N; Mallia JR; Thomas SS; Mathews A; Sebastian P; Madhavan J
    J Biomed Opt; 2006; 11(1):014018. PubMed ID: 16526895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stokes shift spectroscopy highlights differences of cancerous and normal human tissues.
    Pu Y; Wang W; Yang Y; Alfano RR
    Opt Lett; 2012 Aug; 37(16):3360-2. PubMed ID: 23381257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.