BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 17343514)

  • 1. Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution.
    Buytaert JA; Dirckx JJ
    J Biomed Opt; 2007; 12(1):014039. PubMed ID: 17343514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tomographic imaging of macroscopic biomedical objects in high resolution and three dimensions using orthogonal-plane fluorescence optical sectioning.
    Buytaert JA; Dirckx JJ
    Appl Opt; 2009 Feb; 48(5):941-8. PubMed ID: 19209207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope.
    Romero-Borja F; Venkateswaran K; Roorda A; Hebert T
    Appl Opt; 2005 Jul; 44(19):4032-40. PubMed ID: 16004050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning holographic microscopy of three-dimensional fluorescent specimens.
    Indebetouw G; Zhong W
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jul; 23(7):1699-707. PubMed ID: 16783434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realistic 3D computer model of the gerbil middle ear, featuring accurate morphology of bone and soft tissue structures.
    Buytaert JA; Salih WH; Dierick M; Jacobs P; Dirckx JJ
    J Assoc Res Otolaryngol; 2011 Dec; 12(6):681-96. PubMed ID: 21751073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral confocal microscope.
    Sinclair MB; Haaland DM; Timlin JA; Jones HD
    Appl Opt; 2006 Aug; 45(24):6283-91. PubMed ID: 16892134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated extended volume imaging of tissue using confocal and optical microscopy.
    Sands GB; Gerneke DA; Smaill BH; Le Grice IJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():133-6. PubMed ID: 17946383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolution enhancement in a light-sheet-based microscope (SPIM).
    Engelbrecht CJ; Stelzer EH
    Opt Lett; 2006 May; 31(10):1477-9. PubMed ID: 16642144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual sectioning of cardiac tissue relative to fiber orientation.
    Sands GB; Smaill BH; LeGrice IJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():226-9. PubMed ID: 19162634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point-spread function synthesis in scanning holographic microscopy.
    Indebetouw G; Zhong W; Chamberlin-Long D
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jul; 23(7):1708-17. PubMed ID: 16783435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General and efficient super-resolution method for multi-slice MRI.
    Poot DH; Van Meir V; Sijbers J
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):615-22. PubMed ID: 20879282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guiding a confocal microscope by single fluorescent nanoparticles.
    Cang H; Xu CS; Montiel D; Yang H
    Opt Lett; 2007 Sep; 32(18):2729-31. PubMed ID: 17873950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of 3D mapping of cardiac electrical activity with spinning slit confocal optics.
    Hwang SM; Choi BR; Salama G
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1093-7. PubMed ID: 17946022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed confocal fluorescence imaging with a novel line scanning microscope.
    Wolleschensky R; Zimmermann B; Kempe M
    J Biomed Opt; 2006; 11(6):064011. PubMed ID: 17212534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-exposure optical sectioning by color structured illumination microscopy.
    Krzewina LG; Kim MK
    Opt Lett; 2006 Feb; 31(4):477-9. PubMed ID: 16496892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved in vivo photoacoustic microscopy based on a virtual-detector concept.
    Li ML; Zhang HE; Maslov K; Stoica G; Wang LV
    Opt Lett; 2006 Feb; 31(4):474-6. PubMed ID: 16496891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confocal theta line-scanning microscope for imaging human tissues.
    Dwyer PJ; DiMarzio CA; Rajadhyaksha M
    Appl Opt; 2007 Apr; 46(10):1843-51. PubMed ID: 17356629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel technique of three-dimensional reconstruction segmentation and analysis for sliced images of biological tissues.
    Li J; Zhao HY; Ruan XY; Xu YQ; Meng WZ; Li KP; Zhang JQ
    J Zhejiang Univ Sci B; 2005 Dec; 6(12):1210-2. PubMed ID: 16358381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope.
    Wang Z; Wei D; Wei L; He Y; Shi G; Wei X; Zhang Y
    J Biomed Opt; 2014 Aug; 19(8):086009. PubMed ID: 25117079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-sectional profiles and volume reconstructions of soft tissues using laser beam measurements.
    Langelier E; Dupuis D; Guillot M; Goulet F; Rancourt D
    J Biomech Eng; 2004 Dec; 126(6):796-802. PubMed ID: 15796338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.