These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 17343568)

  • 1. Catalytic mechanism of Zn2+-dependent polyol dehydrogenases: kinetic comparison of sheep liver sorbitol dehydrogenase with wild-type and Glu154-->Cys forms of yeast xylitol dehydrogenase.
    Klimacek M; Hellmer H; Nidetzky B
    Biochem J; 2007 Jun; 404(3):421-9. PubMed ID: 17343568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens.
    Slatner M; Nidetzky B; Kulbe KD
    Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional properties of a yeast xylitol dehydrogenase, a Zn2+-containing metalloenzyme similar to medium-chain sorbitol dehydrogenases.
    Lunzer R; Mamnun Y; Haltrich D; Kulbe KD; Nidetzky B
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):91-9. PubMed ID: 9806889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pH on sheep liver sorbitol dehydrogenase steady-state kinetics.
    Lindstad RI; McKinley-McKee JS
    Eur J Biochem; 1995 Nov; 233(3):891-8. PubMed ID: 8521856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of genes involved in D-sorbitol oxidation in thermotolerant Gluconobacter frateurii.
    Soemphol W; Saichana N; Yakushi T; Adachi O; Matsushita K; Toyama H
    Biosci Biotechnol Biochem; 2012; 76(8):1497-505. PubMed ID: 22878210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of recombinant xylitol dehydrogenase from Galactocandida mastotermitis expressed in Escherichia coli.
    Nidetzky B; Helmer H; Klimacek M; Lunzer R; Mayer G
    Chem Biol Interact; 2003 Feb; 143-144():533-42. PubMed ID: 12604239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration.
    Parmentier S; Arnaut F; Soetaert W; Vandamme EJ
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):255-62. PubMed ID: 15296174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and characterization of a novel NAD+ -dependent xylitol dehydrogenase from Gluconobacter oxydans CGMCC 1. 637.
    Lin Y; Xie Z; Zhang J; Bao W; Pan H; Li B
    Wei Sheng Wu Xue Bao; 2012 Jun; 52(6):726-35. PubMed ID: 22934353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Kinetic properties of sorbitol dehydrogenase from calf liver cell cytoplasm].
    Sudovtsov VE; Zharmukhamedova TIu
    Biokhimiia; 1990 Apr; 55(4):680-6. PubMed ID: 2378913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitution of cysteine-153 ligated to the catalytic zinc in yeast alcohol dehydrogenase with aspartic acid and analysis of mechanisms of related medium chain dehydrogenases.
    Kim K; Plapp BV
    Chem Biol Interact; 2019 Apr; 302():172-182. PubMed ID: 30721696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinetic mechanism of sheep liver sorbitol dehydrogenase.
    Lindstad RI; Hermansen LF; McKinley-McKee JS
    Eur J Biochem; 1992 Dec; 210(2):641-7. PubMed ID: 1459146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity of sheep liver sorbitol dehydrogenase.
    Lindstad RI; Köll P; McKinley-McKee JS
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):479-87. PubMed ID: 9461546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the role of Brønsted catalysis in Pseudomonas fluorescens mannitol 2-dehydrogenase.
    Klimacek M; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2003 Oct; 375(Pt 1):141-9. PubMed ID: 12826012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc coordination in mammalian sorbitol dehydrogenase. Replacement of putative zinc ligands by site-directed mutagenesis.
    Karlsson C; Höög JO
    Eur J Biochem; 1993 Aug; 216(1):103-7. PubMed ID: 8365396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible inhibition of sheep liver sorbitol dehydrogenase by thiol compounds.
    Lindstad RI; McKinley-McKee JS
    Eur J Biochem; 1996 Oct; 241(1):142-8. PubMed ID: 8898899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional assignment of gene AAC16202.1 from Rhodobacter capsulatus SB1003: new insights into the bacterial SDR sorbitol dehydrogenases family.
    Sola-Carvajal A; García-García MI; Sánchez-Carrón G; García-Carmona F; Sánchez-Ferrer A
    Biochimie; 2012 Nov; 94(11):2407-15. PubMed ID: 22771766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.